
Version 1.8
June 22, 2011

Dubberly Design Office
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

Dubberly Design Office

Understanding
Digital Typography

2



2Dubberly Design Office / Understanding Digital Typography

How Are Languages Represented?

How Have Latin Characters Evolved?
How Have Fonts Evolved?
How Do You Make Letters Look Good?

How Do Characters Go Together?
How Do Words Go Together?

How Do Pages Go Together?

What Is a Book?

Glyphs

Pages

Books

Collections

What’s Different?

How Is Type Input?
How Is Type Encoded?
How Are Characters Represented?
How Do Computers Display Type?
How Are Fonts Managed?

How Is Text Formatted?
How Are Pages Rendered?

What Is a Digital Book?

How Are Digital Books Managed?

How Do Fonts Work on the Web?

What is Kindle?

How Does Kindle Encode Fonts?
How Does Kindle Render Fonts? 

* Kindle Font Specimen Book

What Can Users Change When 
Reading a Kindle Book?

How Does Kindle Encode Documents?
How Does Kindle Render Documents?

How Do You Publish a Kindle Book?

*

Fonts

Layout

Substrate

Interactivity

The Future

Overview

1Version 1.8
June 22, 2011

Dubberly Design Office
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

Dubberly Design Office

Understanding
Typography

Kindle 
Font Specimen
Book

Dubberly Design Office

Version 1.0
March 1, 2011

Prepared by
Dubberly Design Office
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

Version 1.8
June 22, 2011

Dubberly Design Office
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

Dubberly Design Office

Understanding
Digital Typography

2 Version 1.8
June 22, 2011

Dubberly Design Office
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

Dubberly Design Office

Understanding
Typography on Kindle

3 Version 1.8
June 22, 2011

Dubberly Design Office
2501 Harrison Street, #7
San Francisco, CA 94110

415 648 9799

Dubberly Design Office

Recommendations
for Kindle

4

Dubberly Design Office analyzed typography 
on Kindle and suggested ways the experience 
of reading might be improved. We have 
produced a sequence of four reports leading 
to specific recommendations.  

The first report provides an overview  
of typography; the second describes 
how computers have changed type and 
typesetting; and the third describes how 
Kindle implements type and typography 
today. We also produced a Kindle Font 
Specimen Book as a supplement to the third 
report. The fourth report suggests ways  
the experience of reading on Kindle might  
be improved. 

All four reports are organized in a similar 
structure, beginning with an overview and 
preceding from glyphs to pages to books to 
collections for Latin and other character sets.



Dubberly Design Office / Understanding Digital Typography 3

Introduction
Timeline of Publishing Approaches 

What’s Different?

Analog vs Digital
Screen Technology
Electronic Ink
Stack Components
File Formats, Languages, Libraries

How Is Type Input?

Mechanical Layout
Visual & Functional Layout
Virtual Keyboard
QWERTY
Dvorak Simplifi ed
Key Strokes to Words
Language Support
Input Method Editors

How Is Type Encoded?

Counting for Computers
Morse Code
Baudot Code
Murray Code
ASCII
Code-pages
Windows 1252
ISO/IEC 8859
Big5
Shift JIS
KS X 1001
Unicode
GB18030

How Are Characters Represented?

Bitmap Fonts
Digital Font File Formats (Timeline)
Ikarus
Metafont
PostScript & TrueType
OpenType
Contemporary Font Format Comparison

How Do Computers Display Type?

Bit Depth
Outlines vs Pixels
Hinting
Aliasing
Anti-aliasing
Subpixel Rendering
Comparing Rendering Strategies
Rendering Engines Comparison
Windows vs Mac
OS vs Browser

How Are Fonts Managed?

System Fonts
Web-safe Fonts
Font Management Software
Font Foundries
Font Embedding
Font Substitution
Font Linking

How Is Text Formatted?

Markup & Style
Plain Text
Evolution of the Typesetting “Stack”
TeX
PDF
HTML
CSS
JavaScript
DOM
Render Tree
CMS
XML 
Dublin Core

How Are Pages Rendered?

Hello, World!
Font Cache
Glyph Cache
Contextual Shaping
Line & Paragraph Assembly
H&J
Page Assembly
Frame Buffer

What Is a Digital Book?

Access
Hypertext
Memex
E-book Formats

How Are Digital Books Managed?

Directories
Tagging
Search
Management Tools
Online Management Tools
Online Social Book Services
Types of E-book Readers

Appendix:

How Do Fonts Work on the Web?

Browser Layout Engines
Webpage Rendering
Webpage Rendering: Fonts
Font Replacement
Font Hosting
EOT
WOFF
Digital Rights Management for Fonts
SVG
Font Hosting: Google
Font Hosting: Typekit

4
5

6
7
8
9

10
11

12

13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28

29–45
46
47
48

49–53
54

55

56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73

74

75
76
77
78
79
80
81

82

83
84
85
86
87
88
89
90
91
92
93
94
95

96

97
98
99

100
101
102
103
104

105

106
107
108
109

110

111
112
113
114
115
116
117

118

119
120
121
122
123
124
125
126
127
128
129

Contents:
Understanding Digital Typography



Dubberly Design Office / Understanding Digital Typography 4

Introduction

Typography is intimately intertwined with technology. As new 

marking technologies arrive, they reproduce earlier forms, but 

shortly thereafter they begin to modify those forms and adapt 

them to the grain of the new technology. The shape of serif 

letters, for example, is a refl ection of the tools with which they 

are drawn or carved – serifs are a neat way of ending a stroke 

drawn by a brush. 

Book making faced a major disruption in 1456, when 

Gutenberg introduced printing with moveable type in 

the West. (It was also invented separately in Asia.) Book 

making changed again in the 1880s with the introduction of 

mechanical typesetting equipment. The process of change 

accelerated in the 1960s, fi rst with phototypesetting and then 

with digital typesetting.

The scale of change in the past 50 years has been 

immense. No aspect of books, book making, and book selling 

has been left untouched. What it means “to read” and what 

constitutes “a book” is changing rapidly.  

This report describes issues unique to digital type and 

typography: how digital text is input and encoded; how 

letterforms are represented, rendered, and managed; and how 

text is formatted and rendered. This report also touches on 

digital books and digital libraries since they cannot be entirely 

separated from digital typography. 

Technologies related to type and typography on the Web are 

rapidly evolving. The main issues are covered in the appendix.



Dubberly Design Office / Understanding Digital Typography 5

Timeline of Publishing Approaches

Trade of 

Book Making

InterPress
Precursor to 
PostScript

TeX
Digital manuscript
Text marked-up 
 by author
Digital font fi le
 (Metafont)

ENQUIRE
Precursor to HTML

Mechanical 
Typesetting
Typed manuscript
Text marked-up 
 by expert operator
Metal type

Phototype
Typed manuscript
Text marked-up 
 by expert operator
Fonts stored on 
 photo negatives

Offset 
Lithography

Page Description 

Languages

The Web

1976

PostScript
Page description language
Digital font fi le

(PostScript Type 1)

19821978

PDF
Based on PostScript
Allows for font embedding
File is complete 

(no links needed)

In the near future, page 
description languages 
will merge with the Web. 

1993

LaserWriter

AppleTalk

1984

Digital Imagesetter

PageMaker

1985

1980

ePub
Built on HTML & CSS
Uses compression
Fonts & images can be 

packaged into the fi le

1999

Kindle

2007

CSS
Used with HTML
Markup for presentation

1996

JavaScript
Scripting language 
provides a method 
for dynamic 
webpages

1995

HTML 1.0
Digital manuscript
Markup encoded into fi le
Digital font fi le

 resident on user’s 
computer

Images are linked 
 (separate fi les)

1990

1880 c.1954c.1950

Digital Typesetter
Typed manuscript
Text marked-up 
 by expert operator
Digital font fi le

c.1980

Typesetting evolved rapidly in the 1970s and 1980s. In parallel, 
low-end desktop computer systems became increasingly 
sophisticated. By the mid-1990s, typesetting as an independent 
service began to disappear. At fi rst, it was replaced by service 
bureaus offering image-setting at substantially lower prices 
than traditional typesetting businesses. Service bureaus didn’t 
last long as commercial printers began to offer direct-to-plate 
technology, cutting out the need for traditional typesetting, 
paste-up, camera work, stripping, and plate making. At that point, 
traditional book making essentially merged with desktop design. 

For now, plate-making is the fi nal step in the book 
production process, but the days of offset-lithography printing 
are limited. Digitally-driven ink-jet printing will replace offset-
lithography for most applications within the next ten years. 

The low-cost and wide availability of early desktop publishing 
(DTP) solutions provided a viable alternative to traditional 
publishing in spite of poor results. However, as DTP solutions 
improved they eventually replaced the older technologies. Today, 
Web-based publishing and primitive mark-up languages are a poor 
substitute for high-quality DTP but all signs point to another 
technological innovation.



6Dubberly Design Office / Understanding Digital Typography

In the last 50 years, technology has evolved at a rapid pace, 

which has had a profound impact on all aspects of typography.

6

What’s Different?



Dubberly Design Office / Understanding Digital Typography 7

Prior to digital technology, letters were written with a brush or 
pen, carved from metal, painted on fi lm, or cut from rubylith. All of 
these processes are analog (i.e. physically continuous). This worked 
well because letterforms can have complex shapes and most were 
printed very small. Digital technology changed everything because it 
breaks up information into discrete chunks (i.e. ones and zeros). 

What’s Different?

Analog vs Digital

Analog curve Digital curve

Tile signageMetal type Needlepoint embroideryStone carving

Bits are either on or off, introducing 

distortions or “aliasing”.

Digital type predates computers.



Dubberly Design Office / Understanding Digital Typography 8

Screen Technology 

What’s Different?

Letters are now rendered on screens in addition to being printed on 
paper. There are many different types of screens.

Light-Emitting Diode (LED)

Like an incandescent light bulb, 

an LED passes an electrical signal 

up one electrical terminal, across 

a gap, and down another. Unlike 

an incandescent bulb, LEDs do 

not have a fi lament, instead they 

have a diode – a kind of simple 

semiconductor with two halves. 

Only diodes made of certain 

materials light up, the material 

determines the color of light.

Cathode Ray Tube (CRT)

CRTs use an electron beam (the 

“ray” in “cathode ray tube”) to 

“paint” on a screen of phosphors 

(a material that emits visible light 

when struck with radiation). The 

beam paints one line at a time, 

from left to right, then moves 

to the line below it, and repeats 

this process until it reaches the 

bottom of the screen. In a black 

and white CRT, the phosphor is 

a solid coat of white. In a color 

CRT, there are phosphors which 

emit red, green, and blue light, 

packed together in clusters 

called “triads”. 

Liquid Crystal Display 

(LCD)

In color LCDs each individual 

pixel is divided into three cells, or 

subpixels, which are colored red, 

green, and blue, respectively. 

Color is achieved by passing 

light through fi lters of pigment, 

dies, or metal oxides.

Organic Light-Emitting 

Diode (OLED)

Unlike most display technology, 

OLEDs do not use a backlight to 

illuminate pixels. Instead, they 

are composed of an organic 

layer sandwiched between two 

layers of electrodes. The organic 

molecules emit light. When they 

conduct electricity between the 

two electrode layers.

Electronic Ink (eInk)

eInk uses microcapsules held 

in a thin layer of liquid polymer 

sandwiched between two arrays 

of electrodes. The micro-

capsules contain numerous 

white and black pigment 

particles suspended in a clear 

solution. The white particles are 

negatively charged – applying 

a positive charge to the top 

of the micro-capsule pulls the 

white particles to the top, and 

the capsule appears white. The 

external charge is reversed to 

turn the capsule black. Like OLED 

technology, eInk also uses no 

backlight, but it requires ambient 

light to be legible. 

Dot Matrix

The screen is a matrix of lights or 

mechanical indicators arranged 

in a rectangular confi guration 

(other confi gurations are possible, 

but are not common). Text and 

graphics can be rendered by 

switching indicators on or off.

Segment Display

The screen is comprised of 

preconfi gured segments, which 

switch on or off to create 

desired glyphs. The segments 

are usually light emitting 

diodes (LED) or liquid crystal 

displays (LCD), though they may 

also use vacuum fl uorescent, 

cold cathode gas discharge, 

incandescent fi laments, and 

other technologies to emit light. 

Segments may also be purely 

mechanical and rely on refl ected 

ambient light to be legible. 



Dubberly Design Office / Understanding Digital Typography 9

Unlike conventional backlit fl at panel displays, electronic ink (eInk) 
displays have no backlight and thus refl ect light like ordinary paper. 
The technology is a subset of “bistable” display technology, which 
retains an image when powered off (bistable because the image 
displayed is stable in two states: on and off). 

The main principle in eInk is the use of tiny microcapsules 
(or, “bubbles”) that contain both black and white pigment particles 
suspended in a clear fl uid. Each microcapsule is the size of one pixel 
and they are sandwiched between two layers of electrodes (the top 
of which is clear). When electricity is passed between electrode pairs, 
it causes the particles in each microcapsule to either rise or sink. A 
positive charge causes white particles to rise while a negative charge 
causes black particles to rise. It is possible to generate gray-tones by 
applying a partial charge to a microcapsule – current eInk technology 
can achieve 16 gray-tones (or, 4-bit color depth).  

Electronic Ink

What’s Different?

Upper, transparent 

electrode layer

Positively charged 
white particles

Transparent microcapsule

Negatively charged 
black particles

Transparent oil

Lower electrode layer

Subcapsule addressing enables high 

resolution display capability

Appearance 
of pixels

Liquid polymer layer

containing eInk capsules

Disclaimer:

It is unclear how exactly 

grayscale is produced 

with eInk – no thorough 

explanation could be found 

and the literature is vague.

1 pixel



Dubberly Design Office / Understanding Digital Typography 10

Computer technology can typically be described in terms of a “stack”. 
A stack is a set of components that build on top of one another, each 
layer utilizing the layer below it for core components and enabling the 
layer above to function in the same way. For instance, a page composer 
relies on the elements of the resource layer such as the glyph renderer 
and keyboard driver to function. These resources in turn need the OS to 
function properly, and the OS relies on the CPU for computing power. 
This process also works in the other direction: without an OS, the CPU 
would have nothing to do.

Stack Components

What’s Different?

Resource Layer

Reader / Browser / Editor

Operating System

CPU

Page ComposerFont ManagerStored Book/

Webpage

Font Files Font Cache Glyph Renderer

Keyboard 

Driver

Language 

Manager

Screen Driver

Rendered 

Book/

Webpage

To a user the keyboard appears 

to send signals to an application, 

which appears to send signals to a 

screen. Actually, both the keyboard 

and display are controlled by 

device drivers in turn controlled by 

the operating system, which also 

manages the applications. 

Separating components into layers, 

connected by formal rules for 

input and output (APIs), enables 

independent development of each 

layer. The process of abstracting 

(creating a layer) creates value. Lower 

layers tend to become commodities. 

New layers continue to evolve, and 

opportunities are developing to 

create new layers in the world of 

electronic books. 

User



Dubberly Design Office / Understanding Digital Typography 11

File Formats, Languages, Libraries

What’s Different?

File Formats

A fi le format is method of encoding information into a form that a 
computer can understand (0s and 1s, i.e. binary). 
e.g. PostScript page description fi le format (.ps)

JPEG image fi le format (.jpeg)

MPEG-2 Audio Layer III fi le format (.mp3)

Font File Formats

A format for encoding the glyph outlines, metrics, hinting data, 
context-specifi c features, etc. of a font.
e.g. PostScript Type 1 (.pfm)

 TrueType (.ttf)

 OpenType (.otf)

Web Open Font Format (.woff)

Image File Formats

Standardized means of organizing and storing digital images. 
Image fi le formats store date as either pixels or vector data that are 
rasterized to pixels when displayed on screen. 
e.g. JPEG (.jpg)

 TIFF (.tif)

Encapsulated PostScript (.eps)

Electronic Publishing Formats

A format for packaging text and image-based publications in digital 
form. Many make use of compression algorithms as a way to 
contain fi le size and package more than one fi le (text, HTML, image, 
fonts) into a single transportable fi le.
e.g. Plain Text (.txt)

 ePub (.epub)

Mobipocket (.mobi, .prc)

Portable Document Format (.pdf)

Programming Language

An artifi cial language designed for writing instructions that can 
be performed by a computer or other machinery. The earliest 
programming languages predate the invention of the computer and 
were used for controlling looms in textile manufacturing. 
e.g. C++

 Java

 Ruby

Markup Language

A system for annotating text in a way that is syntactically 
distinguishable from that text. Markup languages are typically used 
as a way to instruct a person or computer about what the various 
parts of a text are.
e.g. HTML (HyperText Markup Language)

 TeX

XML (Extensible Markup Language)

Style Sheet Language

A language for expressing the presentation of a document.
e.g. CSS (Cascading Style Sheets)

XSL (Extensible Style Sheet Language)

Scripting Language

A programming language that allows control of an application. 
“Scripts” are distinct from the core code and usually written in a 
different language. Scripting languages typically allow a user to 
modify the default arrangement of an application.
e.g. JavaScript

 PHP

 ActionScript

Page Description Language

Used to describe the appearance of a printed page at a higher level 
than an output bitmap. Most page description languages are not full 
programming languages but contain selective elements of them.
e.g. PostScript

SVG (Scalable Vector Graphics)

 InterPress

Software Library

A collection of resources used to develop software, including 
subroutines, classes, values, and type specifi cations.
e.g. Java Class Library

C++ Standard Library

Dynamic Link Library (DLL)

Application Framework

An abstraction in which common code providing generic 
functionality can be quickly called or selectively overridden by user 
code to provide more tailored functionality.
e.g. Ruby on Rails (Web framework for Ruby)

Django (Web framework for Python)

Agavi (application framework for PHP) 



1212

How Is Text Input?
Writing systems are relatively simple to apply to paper with a 

pen, pencil, or brush. However entering letters and words into 

a computer is a little more complicated. Some writing systems, 

such as English, are fairly straightforward. The user enters one 

character after another and separates words with spaces. There 

is one key for each letter, and a modifi er key (Shift) to alternate 

between lower- and upper-case. However, many writing systems 

have far more characters than English, and input is not nearly 

as linear. A simple example is Norwegian, which also uses a 

Latin-based script, but requires the use of many more diacritical 

marks, resulting in the user’s Shift, Option, and Command keys 

getting a workout. A more complex example is Japanese, which 

has three different scripts and a variety of ways to enter them. 

A truly international text display and management system needs 

to take these and many other writing systems into account.  

Dubberly Design Office / Understanding Digital Typography



Dubberly Design Office / Understanding Digital Typography 13

A keyboard sends key codes to the computer. Software, usually part of 
the operating system, determines how the key codes are interpreted. 
(This interpretation method can typically be changed by the user). 
Most keyboards today use one of three different mechanical layouts, 
usually referred to as ISO (International Standards Organization), ANSI 
(American National Standards Institute), and JIS (Japanese Industrial 
Standards). Mechanical layout refers only to the physical arrangement 
of keys. When the user presses the “A” key, the keyboard send an 
internal reference number or “raw keycode” that corresponds to the 
left-most main key in the home row, not “A”.

How Is Type Input?

Mechanical Layout

ISO keyboard layout: 61 keys

ANSI keyboard layout: 60 keys

JIS keyboard layout: 66 keys



UK ISO keyboard layout

Slovenian ISO keyboard layout

Icelandic ISO keyboard layout

Qtab

1`

Acaps

Z\

W

2

S

E

3

D

R

4

F

T

5

G

Y

6

H

X C

space

V B N

U

7

J

M , . / shiftshift

I

8

K

O

9 -

L ; ‘ #

[ ]P

0 = delete

cntrl cntrlopt optcmd cmd

enter

Qtab

1¸

Acaps

Z<

W

2

S

E

3

D

R

4

F

T

5

G

Z

6

H

X C

space

V B N

U

7

J

M , . - shiftshift

I

8

K

O

9 '

L Č Ć Ž

Š ÐP

0 + delete

cntrl cntrlopt optcmd cmd

enter

Qtab

1˚

Acaps

Z>

W

2

S

E

3

D

R

4

F

T

5

G

Y

6

H

X C

space

V B N

U

7

J

M , . Þ shiftshift

I

8

K

O

9 Ö

L Æ ^ +

Ð ‘P

0 - delete

cntrl cntrlopt optcmd cmd

enter

Dubberly Design Office / Understanding Digital Typography 14

The visual layout of a keyboard is the set of marks and images 
displayed on each key. These tell the user what letter, fi gure, or mark 
will appear when a key is pressed. The same mechanical layout 
can be used with different visual layouts which vary by language, 
country, and user preference. For example, the ISO mechanical 
layout is used throughout Europe, but German, French, and UK 
variants have different visual layouts. (See page 47.)

The functional layout is the mapping of the mechanical layout 
to the visual layout. The functional layout is typically an operating 
system (OS) function and maps to the current OS language. The 
user can typically change the functional layout without changing the 
current OS language.  This allows users to input any writing system, 
regardless of the keyboard’s visual layout. For example, a user may 
want to type in Hangul on an ANSI English keyboard. 

Almost all keyboards have one to three more glyph sets than 
what’s shown on the visual layout. These additional glyphs are 
activated by pressing a modifi er key in addition to a glyph key. With 
most Latin script system keyboards, the user must press the Shift 
key in addition to a character key to get an uppercase character. 
(It’s interesting to note that most Latin script system keyboards use 
uppercase characters in their visual layout—what you see on the 
keys is typically not what you get when you press them!) The control 
and Alt keys perform similar functions to input unmarked glyphs 
such as accented characters, mathematical characters, ligatures, or 
geometric symbols.

Visual & Functional Layout

How Is Type Input?

Visual layout What you see

Mechanical layout The physical keys

Functional layout Mapping what you see to the physical keys



Dubberly Design Office / Understanding Digital Typography 15

A virtual keyboard is a software component that mimics the 
appearance and functionality of mechanical keyboards. Depending 
on hardware confi guration, users “type” using a mouse-controlled 
pointer, by tapping directly on a touchscreen, or even with a 
mechanical keyboard. On a PC, virtual keyboards provide alternative 
input methods for the disabled, multi-lingual users who switch 
frequently between languages, and as a security measure to thwart 
keystroke logging malware. Devices that lack physical keyboards, 
such as smartphones and tablet computers, often use virtual 
keyboards as their sole text-input interface. Virtual keyboards often 
have the same visual layout as mechanical keyboards, although most 
stray from the standard ISO, ANSI, and JIS mechanical layout to 
save space and, especially on touchscreen devices, to maximize key 
size. This is often done by putting fi gures and punctuation marks on 
secondary screens.

One of the primary issues with virtual keyboards is how to 
provide feedback. This isn’t a problem with mechanical keyboards 
because you can feel the key under your fi nger.

Virtual Keyboard 

How Is Type Input?

Motorola virtual keyboard.



United States QWERTY keyboard.

German QWERTZ keyboard.

French AZERTY keyboard.

Qtab

1`

Acaps

Z

W

2

S

E

3

D

R

4

F

T

5

G

Y

6

H

X C

space

V B N

U

7

J

M , . / shiftshift

I

8

K

O

9 -

L ; ‘

[ ] \

enter

P

0 = delete

cntrl cntrlopt optcmd cmd

Qtab

1ˆ

Acaps

Y<

W

2

S

E

3

D

R

4

F

T

5

G

Z

6

H

X C

space

V B N

U

7

J

M , . - shiftshift

I

8

K

O

9 ß

L Ö Ä #

Ü +P

0 ´ delete

cntrl cntrlopt optcmd cmd

enter

Atab

&²

Qcaps

W\

Z

É

S

E

“

D

R

‘

F

T

(

G

Y

-

H

X C

space

V B N

U

È

J

, ; : ! shiftshift

I

_

K

O

Ç )

L M Ù *

^ $P

À = delete

cntrl cntrlopt optcmd cmd

enter

Dubberly Design Office / Understanding Digital Typography 16

The most popular visual layout is known as QWERTY, named after the fi rst 
six letters on the keyboard. QWERTY was invented in 1875 by Christopher 
Sholes and Amos Densmore. It is frequently claimed that QWERTY was 
developed by Sholes to slow typing speeds to prevent keys from jamming 
on early models of his typewriter. However, some researchers say this is an 
urban legend. Early target markets for typewriters were telegraphers who 
would transcribe incoming Morse code in real time – speed would have 
been essential to them. Furthermore, the three most common letter pairs in 
English – “th”, “er”, and “re” are all made by pressing adjacent keys.

Whatever the story behind QWERTY, it is undoubtedly an international 
standard. Variations on QWERTY are usually based on differences in the 
location of the “Q”, “A”, “Z”, “M”, and “Y” keys. As a result, Germans use 
QWERTZ keyboards and the French use AZERTY keyboards.

QWERTY 

How Is Type Input?



United States QWERTY keyboard.

American Dvorak Simplifi ed keyboard layout.

Qtab

1`

Acaps

Z

W

2

S

E

3

D

R

4

F

T

5

G

Y

6

H

X C

space

V B N

U

7

J

M , . / shiftshift

I

8

K

O

9 -

L ; ‘

[ ] \

enter

P

0 = delete

cntrl cntrlopt optcmd cmd

‘tab

1`

Acaps

;

,

2

O

.

3

E

P

4

U

Y

5

I

F

6

D

Q J

space

K X B

G

7

H

M W V Z shiftshift

C

8

T

R

9 [

N S -

/ = \

enter

L

0 ] delete

cntrl cntrlopt optcmd cmd

Dubberly Design Office / Understanding Digital Typography 17

In 1936, Dr. August Dvorak and his brother-in-law, Dr. William Dealey, 
patented a new visual layout for keyboards. Dvorak and his team as 
well as the American National Standards Institute (ANSI) continued 
to develop variations on the original design. Known today as the 
Dvorak layout, it is the only visual layout registered with ANSI other 
than QWERTY. 

Proponents claim the Dvorak layout requires less fi nger 
motion, reduces errors, and increases typing speed in comparison 
to QWERTY. More recently, Dvorak layouts are purported to reduce 
repetitive motion injuries such as carpal tunnel syndrome. The 
Dvorak layout supposedly accomplishes all this because most 
commonly used letters are placed in the home row. 

Dvorak adoption has been slow in spite of shipping as an option 
with all major operating systems. There are several contributing 
factors: studies on the benefi ts of Dvorak have been inconclusive; 
the cost of replacing QWERTY layout keyboards is too high; and re-
learning how to type is just too hard. 

Dvorak Simplifi ed 

How Is Type Input?

Key stroke frequency distribution (English)

Top 52% 22%

Home 32% 70%

Bottom 16% 8%

QWERTYRow Dvorak



Hello, World!

56-4 14 37 37 31 43 49 56-13 31 15 37 2 56-18

0048 0065 006C 006C 006F 002C 00A0 0057 006F 0072 006C 0064 0021

H e l l o , W o r l d !

Mechanical keys pressed 

and raw keycodes sent to 

keyboard driver.

Keycodes translated into 

Unicode values by the 

functional layout.

Unicode values used 

to generate character 

string. (See page 48.)

Character string output 

on display (specifi c 

formatting choices such 

as font and type size 

are applied before fi nal 

onscreen display).

Keyboard

The keycodes for each 

mechanical key are shown 

in magenta

Keycodes

Mechanical Keys

Unicode Values

This is how text 

information is stored 

in computer fi les

Characters

Displayed Words

Qtab

1`

Acaps

Z

W

2

S

E

3

D

R

4

F

T

5

G

Y

6

H

H E L L L D 1O O R, Wspace

shift shift shift

X C

space

V B N

U

7

J

M , . / shiftshift

I

8

K

O

9 -

L ; ‘

[ ] \

return

P

0 = delete

cntrl cntrlopt optcmd cmd

Dubberly Design Office / Understanding Digital Typography 18

The connection between keyboard and displayed text seems 
pretty direct – you press a key and a letter appears. 

Interpreting a mechanical key press to mean that the user 
wants to input a specifi c character or mark is actually a multi-step 
process. Each mechanical key has an associated raw keycode. It 
is the keycode, not the letter, that’s passed to the device OS when 
a key is pressed. The keyboard’s functional layout converts the 
keycode to a character-encoding hex code (typically Unicode). 
Each hex code has a unique character association. That character 
is then passed to the current application which then renders the 
associated letterform glyph. 

Key Strokes to Words 

How Is Type Input?

1248

1850

057

6

13

19

1

14

20

2

15

21

3

17

23

5

16

22

4

7 8

49

9 11 45

32

26

38

46 43 47 44 5656

34

28

40

31

25 27

37 41 39

33 30 42

36

35

29 24 51

59 5558 5855 59



Dubberly Design Office / Understanding Digital Typography 19

The user controls the language of the operating system and 
keyboard functional layout. The author of a document chooses 
what language to write in. Any given operating system must 
be able to display and allow the editing of any language in any 
editable document. 

Choosing an operating system language should change the 
text on all user interface elements (menus, buttons, window titles, 
etc.), the keyboard functional layout, and display defaults for 
date, time formats, monetary units, and measurements such as 
temperature, distance, weight, and volume. The user can override 
language defaults and choose keyboard functional layouts and data 
display options for other languages. 

Text in documents is encoded as a series of numeric values 
with each number uniquely assigned to a letter, fi gure, or symbol 
from virtually any writing system. (See page 18 and the next 
section.) Metadata in the document tells the application layout 
manager and OS screen renderer what font to use to display the 
encoded letters, fi gures, or symbols. 

No font contains glyphs for all possible letters or symbols. 
The screen renderer displays a placeholder character (typically a 
rectangle) from the font in lieu of any missing glyphs. 

Language Support 

How Is Type Input?

Language selection in the Mac OS

I am testing how to write in multiple languages.

Ш фь еуыештп рщц ещ цкшеу шт ьгдешзду дфтпгфпуыю

이 ㅏㅁ 텃팅 호ㅡ 토 ㅡ리터 ㅣㄴ 물팊러 란구ㅏ것.

Typeface: Arial Unicode

The same text displays 

properly when set in a font with 

appropriate glyphs.

I am testing how to write in multiple languages.

Ш фь еуыештп рщц ещ цкшеу шт ьгдешзду дфтпгфпуыю

Typeface: Monaco

A placeholder character is 

substituted for missing glyphs.



Dubberly Design Office / Understanding Digital Typography 20

Mechanical keyboards are effi cient text input devices for most script 
systems. Primary characters are each assigned a key and alternate 
versions (e.g. capitals), special characters, and diacritical marks are 
accessed by using modifi er keys (e.g. Shift, Alt, and Command) in 
combination with the primary keys. This effectively quadruples the 
number of characters that can be input with a mechanical keyboard. 
Script systems such as Japanese, Chinese, and Korean use far 
more characters than could be accessed directly with a mechanical 
keyboard. An additional step, known as an input method editor (IME) 
is required. 

For example, Japanese text is typically entered in one of two 
ways: through “romaji” (transliterated Japanese syllables in a 
romanized form) that is then converted by the computer into kana
(Japanese syllabary), or typed directly in kana. Once kana are input, 
they are either left as is or converted to kanji (Chinese characters). 
The Japanese language has many homophones, and conversion 
of a kana spelling (representing the pronunciation) into a kanji 
(representing the standard written form of the word) is often a one-
to-many process. A kana to kanji converter offers a list of candidate 
kanji characters for the input kana, and the user may use the space 
bar or arrow keys to scroll through the list of candidates until he or 
she reaches the correct one. Sophisticated input method editors 
attempt to guess for the user based on context. 

Chinese text also can be entered in multiple ways. The fi rst 
is nearly identical to the Japanese romaji method and is called 
“pinyin”. The other way to enter Chinese text is shape-based and 
comes in many forms (Cangjie and Wubi are the most popular). The 
system uses 26 “radicals” that are the basic shapes of the Chinese 
script. The method requires the typist be familiar with several 
decomposition rules that defi ne how to analyze a character to arrive 
at its key sequence. These methods are considered much faster 
for experienced typists since each character is visually unique and 
therefore will have a unique key sequence (thus preventing the need 
to scroll through a list of possible characters) but also more diffi cult 
to learn for the same reason. 

Korean is typically entered in a manner very similar to Chinese 
shape methods. 

Input Method Editors 

How Is Type Input?

Region 3: Left Falling Region 4: Right Falling

Region 2: 

Vertical

Region 1: 

Horizontal

Region 5: Hook

Q

A

Z

W

S

E

D

R

F

T

G

Y

H

X C V B N

U

J

M

I

K

O

L

P

Shape-based Input: Chinese Wubi Method

Every Chinese character can be broken down into its root characters. 

Conversely, characters can be built by combining these roots. The Wubi 

keyboard functional layer has fi ve regions, organized by the direction of 

the root’s fi rst stroke. Each region contains fi ve keys, and each key can 

access multiple roots in combination with the Shift, Alt, and Command 

keys. The diagram below shows the regions of the Wubi keyboard 

mapped against the ANSI keyboard layout.

In the example below, the word  is built from components. The matching 

ANSI keys are shown below each Chinese root character. One interesting aspect 

of the Wubi method is that it is not always necessary to type all of the roots 

of a character. In the example below, the typist would not press DTBHH, but 

instead only DTBH because there are no characters in Chinese that are formed 

by pressing DTBH with any other fi nal root. There are many other examples of 

this, including quite a few characters with four- or fi ve-root elements that can be 

typed with only two keystrokes.

D

三
T

丿
B

阝
H

冂
H

丨 帮+ + + + =

Romanized Input: Japanese Romaji Method

Typing in Japanese on a western ANSI keyboard requires the use of 

an input editor to select the proper kana and kanji. In the example below, 

the words gokurousama deshita (thank you for your hard work) are 

entered on an iPhone. 

While typing, the editor presents the user with a short-list of options 

for what the kanji conversion could be. Once the word is typed in, 

the user can click forward to get a full palette of options to select the 

correct word.



21

1836 Morse Code – 36

1874 Baudot Code 5-bit 32

1901 Murray Code 5-bit (×2) 64

1956 Fieldata 6-bit 64

1963 ASCII 7-bit (½ 8-bit) 128

1984 Mac OS Roman 8-bit 256

1986 ISO/IEC 8859 8-bit (×16 pages) 4,096

1987 Unicode 1 16-bit (double byte) 65,563

1996 Unicode 2 21-bit 1,114,112

+

Year Standard Size Code points

21

How Is Type Encoded?
Character encoding systems pair each supported character with a unique ID 

number or code point. These ID numbers tell the current application what 

glyph to display on screen. The number of characters that could be included 

in any encoding system is represented in terms of “bits”. A bit is the smallest 

unit of digital information and can have a value of “1” or “0”. Though the 

term “bit” wasn’t used in the pre-digital era it is still an effective means of 

expressing the capabilities of early encoding systems. In the case of the older 

technology a “bit” measures states such as on/off (e.g. digits), up/down 

(e.g. key positions) or long/short (e.g. sounds). The character count for any 

encoding system is determined by raising the number 2 to the number of 

bits. A 5-bit system, therefore, could encode 32 letters (2 × 2 × 2 × 2 × 2 = 32). 

Over the past 30 years, multiple encoding systems have been defi ned 

and subsequently superseded as the need for more unique character IDs has 

grown in response to increased international document exchange. 

The ASCII encoding system handled only 128 characters (7-bit). Today, 

the contemporary standard, Unicode, can handle up to 1,114,112 possible 

characters (though no one has come close to needing that large a set, yet).

Dubberly Design Office / Understanding Digital Typography



Dubberly Design Office / Understanding Digital Typography 22

Counting for Computers

Most people count using the decimal, or base-10, number system. 
In the decimal number system there are ten possible values for any 
digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Counting in decimal begins with 0 and 
proceeds through 9 before moving on the next column. When the 
values for the fi rst column are exhausted, the next-higher column 
(to the left) is incremented, and counting starts over at 0.

Computers count in the binary, or base-2, number system. In 
the binary number system there are only two possible values for 
any digit: 0 or 1. Counting in binary is similar to counting in decimal. 
Beginning with a single digit, counting proceeds through each 
value, in increasing order. When the values for the fi rst column are 
exhausted, the next-higher column (to the left) is incremented, and 
counting starts over at 0. 

Hexadecimal is a base-16 number system. In the hexadecimal 
number system, there are 16 values for any digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, A, B, C, D, E, F.

Computers encode data into units of information called bytes. 
Most bytes consist of eight bits, which is a convenient power of two 
permitting values from 0 to 255 for one byte. 

Most computers manipulate binary data; however it is diffi cult 
for humans to work with the large number of digits for even relatively 
small binary numbers. Although most humans are familiar with 
decimal numbering, it is much easier to map binary to hexadecimal 
than to decimal, because each hexadecimal digit maps evenly to one 
8-bit byte.

How Is Type Encoded?

Binary and hexadecimal 

map neatly to each other: 

four binary digits (4 bits) 

has the same value as one 

hexadecimal digit.

0

4

8

9

13

1

5

10

14

2

6

11

15

3

7

12

16

Decimal

(base-10)

Binary

(base-2)

0

10 0

10 0 0

10 01

1101

1

101

1010

1110

10

110

1011

1111

11

111

110 0

10 0 0 0

Hexadecimal

(base-16)

0

4

8

9

D

1

5

A

E

2

6

B

F

3

7

C

10

8-bit Byte to Hexadecimal

1 byte has 8 bits*

has values 0 – 255 in binary: 0000 0000 – 1111 1111

can be divided into 4 bits + 4 bits

can be expressed with 2 hexidecimal digits

0000 0000 – 1111 1111   00 – FF

(This system proves quite convenient in specifying 

characters in font tables and colors in color spaces, e.g. 

white = FFFFFF.)

*
A byte does not have to be 8 bits, it can be any number of 

bits. However, 8 bits is the de facto standard.

4 bits

1 byte

has values 0 – 15

equals 1 hexadecimal digit

The second column indicates the number of tens for base-10, 

the number of twos for base-2, and the number of sixteens 

for base-16. Subsequent columns are powers of the base, 

e.g. the third column of base-2 is two to the second power or

the fours column.



· — A

— · · · B

— · — · C

— · · D

· E

· · — · F

— — · G

· · · · H

· · I

· — — — J

— · — K

· — · · L

— — M

— · N

— — — O

· — — · P

— — · — Q

· — · R

· · · S

— T

· · — U

· · · — V

· — — W

— · · — X

— · — — Y

— — · · Z

— — — — — 0

· — — — — 1

· · — — — 2

· · · — — 3

· · · · — 4

· · · · · 5

— · · · · 6

— — · · · 7

— — — · · 8

— — — — · 9

· — · — · — . 

— — · · — — ,

· · — — · · ?

· — — — — · ‘

— · — · — — !

— · · — · /

— · — — · (

— · — — · — )

· — · · · & (also: Wait)

— — — · · · :

— · — · — · ;

— · · · — =

· — · — · +

— · · · ·— –

· · — — · — _

· — · · — · “

· · ·— · · — $

· — — · — · @

Code Character Code Character

Dubberly Design Office / Understanding Digital Typography 23

Morse Code 

In 1836, Samuel B. Morse, Joseph Henry, and Alfred Vail began 
to develop a system for sending text via telegraph that eventually 
would become known as Morse Code. The system transmits text 
as a series of on-off tones, lights, or clicks that can be directly 
understood by a skilled listener or observer without special 
equipment. The International Morse Code encodes the Roman 
alphabet, the Arabic numerals and a small set of punctuation and 
procedural signals as standardized sequences of short and long 

“dots” and “dashes”, or “dits” and “dahs”. Extensions to the Morse 
alphabet exist for non-English script systems that require more than 
the basic set of 26 letters.

Morse code speed is specifi ed in words per minute (WPM) and 
associated with an “element time” equal to 1.2 seconds divided by 
the speed in WPM. A dot consists of an “on” element followed by 
an “off” element, and a dash is three “on” elements and one “off” 
element. Each character is a sequence of dots and dashes, with the 
shorter sequences assigned to the more frequently used letters in 
English – the letter “E” is represented by a single dot, and the letter 

“T” by a single dash. A speed of 12 WPM is therefore associated with 
an element time of 100 milliseconds, so each dot is 100 ms long and 
each dash is 300 ms long, each followed by 100 ms of silence.

How Is Type Encoded?

Short mark, 

a.k.a. dot or dit

Long mark, 

a.k.a. dash or dah

Inter-element gap 

(between dots and dashes)

Short gap 

(between letters)

Medium gap

(between words)

A

B

C

Name

Short mark

Long mark

Inter-element gap

Number of Elements

Examples

1 2 3 4 5 6 7 8 9 10 11



Pattern of Impulses

1 = key press

0 = no key press

Left   Right

00     100 A 1

01     001 B 8

01     101 C 9

01     111 D 0

00     010 E 2

00     110 E' &

01     011 F f

01     010 G 7

01     110 H h

00     011 I o

01     100 J 6

11     100 K (

11     110 L =

11     010 M )

11     011 N Nº

00     111 O 5

11     111 P %

11     101 Q /

11     001 R -

10     001 S ;

10     101 T !

00     101 U 4

10     111 V '

10     011 W ?

10     010 X ,

00     001 Y  3

10     110 Z :

10     100 t .

11     000 Erasure Erasure

01     000 Shift to fi gures 

10     000 Shift to letters

Letters Figures

Dubberly Design Office / Understanding Digital Typography 24

Baudot Code 

Émile Baudot invented his eponymous 5-bit coding system in 1874. 
Later known as the International Telegraph Alphabet No.1 (ITA1), 
the code was entered on a fi ve key, piano-like keyboard. The left 
hand controlled two keys, the right the other three. Once the keys 
had been pressed they were locked down until mechanical contacts 
in a distributor unit passed over the sector connected to that 
particular keyboard, when the keyboard was unlocked ready for the 
next character to be entered, with an audible click (known as the 
“cadence signal”) to warn the operator. Operators had to maintain a 
steady rhythm, and the usual speed of operation was 30 words per 
minute. The operator had to memorize the fi ve-unit codes. Received 
messages were printed or punched onto paper tape.

How Is Type Encoded?

A Baudot keyboard.



Pattern of Impulses

1 = mark

0 = space

00000 null null

00100 space space

11101 Q 1

11001 W 2

10000 E 3

01010 R 4

00001 T 5

10101 Y 6

11100 U 7

01100 I 8

00011 O 9

01101 P 0

11000 A -

10100 S ‘

10010 D $

10110 F !

01011 G &

00101 H #

11010 J ‘

11110 K (

01001 L )

10001 Z “

10111 X /

01110 C :

01111 V ;

10011 B ?

00110 N ,

00111 M .

00010 Carriage return Carriage return

01000 Line feed Line feed

11011 Shift to fi gures 

11111 Shift to letters

Letters Figures

Dubberly Design Office / Understanding Digital Typography 25

Murray Code 

In 1901 the Baudot code was modifi ed by Donald Murray, prompted 
by the development of a typewriter-like keyboard. This revised code 
is sometimes known as the Baudot-Murray code, and later (1930) 
would be revised slightly to become the International Telegraphy 
Alphabet 2 (ITA2). It employed a “keyboard perforator” that punched 
a paper tape when the keys were pressed. Because there was no 
longer a direct correlation between the operator’s hand movements 
and the bits transmitted, there was no concern about arranging 
the keys to minimize hand fatigue, instead Murray designed the 
keyboard layout to minimize wear on the machinery, assigning 
the code combinations with the fewest punched holes to the most 
frequently used characters. Received messages were printed or 
punched onto paper tape.

Like the Baudot code, the Murray code is a 5-bit encoding 
system (32 characters), however the Murray code makes use of a 
shift key/code that allows the user to switch to a second set of 32 
characters (letters in one set, numbers and punctuation in the other). 
The Murray code also introduced control characters for the fi rst time, 
such as CR (carriage return) and LF (line feed). 

How Is Type Encoded?  

A Murray tape.



0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

0100

0001

Dubberly Design Office / Understanding Digital Typography 26

ASCII 

In 1963, the X3 committee of the American Standards Association 
introduced the American Standard Code for Information, better 
known as ASCII. A 7-bit character encoding system, ASCII is based on 
the order of the English alphabet. Most modern character-encoding 
systems are based on ASCII though they support far more characters. 

ASCII includes defi nitions for 128 characters: 33 are non-printing 
control characters (now mostly obsolete) that affect how text and 
space is processed; 94 are printable characters, and the space is 
considered an invisible graphic.

How Is Type Encoded? 

The ASCII character map is arranged so 

that the column and row together form the 

hexadecimal number of each character.

For instance: A = 4 1

Almost all of the characters in the ASCII 

table are mapped to a key, or combination 

of keys, on a keyboard via the functional 

layout. (See page 14.) Control characters, 

indicated in blue, do not map to any keys. 

When a key is pressed, what is actually 

transmitted to the operating system is a 

binary value.

Unicode values for each character are 

listed in gray below the character. 



0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Extension for non-English languages

A

†
2020

°
00B0

¢
00A2

£
00A3

§
00A7

•
2022

¶
00B6

ß
00DF

®
00AE

©
00A9

™
2122

´
00B4

¨
00A8

≠
2260

Æ
00C6

Ø
00D8

B

∞
221E

±
00B1

≤
2264

≥
2265

¥
00A5

µ
00B5

∂
2202

∑
2211

∏
220F

π
03C0

∫
222B

ª
00AA

º
00BA

Ω
03A9

æ
00E6

ø
00F8

C

¿
00BF

¡
00A1

¬
00AC

√
221A

ƒ
0192

≈
2248

∆
2206

«
00AB

»
00BB

…
2026

NBSP
00A0

À
00C0

Ã
00C3

Õ
00D5

Œ
0152

œ
0153

D

–
2013

—
2014

“
201C

”
201D

‘
2018

’
2019

÷
00F7

◊
25CA

ÿ
00FF

Ÿ
0178

⁄
2044

€
20AC

‹
2039

›
203A

fi
FB01

fl
FB02

E

‡
2021

·
00B7

‚
201A

„
201E

‰
2030

Â
00C2

Ê
00CA

Á
00C1

Ë
00CB

È
00C8

Í
00CD

Î
00CE

Ï
00CF

Ì
00CC

Ó
00D3

Ô
00D4

F



F8FF

Ò
00D2

Ú
00DA

Û
00DB

Ù
00D9

ı
0131

ˆ
02C6

˜
02DC

¯
00AF

˘
02D8

˙
02D9

˚
02DA

¸
00B8

˝
02DD

˛
02DB

ˇ
02C7

8

Ä
00C4

Å
00C5

Ç
00C7

É
00C9

Ñ
00D1

Ö
00D6

Ü
00DC

á
00E1

à
00E0

â
00E2

ä
00E4

ã
00E3

å
00E5

ç
00E7

é
00E9

è
00E8

9

ê
00EA

ë
00EB

í
00ED

ì
00EC

î
00EE

ï
00EF

ñ
00F1

ó
00F3

ò
00F2

ô
00F4

ö
00F6

õ
00F5

ú
00FA

ù
00F9

û
00FB

ü
00FC

Identical to ASCII

Dubberly Design Office / Understanding Digital Typography 27

The evolution of computers from, broadly speaking, number-
crunchers to information processors was hampered by the 
limited ASCII characters set. Only 94 of 128 characters were 
printable characters, and these were taken exclusively from 
the Latin script. This severely limited the languages that could 
be supported with ASCII because most languages that use 
the Latin alphabet require additional characters not used in 
English such as ß (German), ñ (Spanish), and å (Swedish and 
other Nordic languages). 

In order to add characters needed for other languages, 
a variety of 8-bit standards were developed. The 256-character 
sets are typically represented as 16 × 16 tables, taking 
advantage of hex code. The tables are called codepages.

The fi rst 128 code points reproduce the original 7-bit 
ASCII system. (The eighth bit of a byte had previously be used 
for data transmission protocol information or was left unused 
to save space.)

Codepages 

How Is Type Encoded?

The Mac OS Roman 

codepage, one of the fi rst 

8-bit extensions to ASCII,

developed in 1984.

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



A

NBSP
00A0

¡
00A1

¢
00A2

£
00A3

¤
00A4

¥
00A5

¦
00A6

§
00A7

¨
00A8

©
00A9

ª
00AA

«
00AB

¬
00AC

SHY
00AD

®
00AE

¯
00AF

B

°
00B0

±
00B1

²
00B2

³
00B3

´
00B4

µ
00B5

¶
00B6

·
00B7

¸
00B8

¹
00B9

º
00BA

»
00BB

¼
00BC

½
00BD

¾
00BE

¿
00BF

C

À
00C0

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Ð
00D0

Ñ
00D1

Ò
00D2

Ó
00D3

Ô
00D4

Õ
00D5

Ö
00D6

×
00D7

Ø
00D8

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

Ý
00DD

Þ
00DE

ß
00DF

E

à
00E0

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

ð
00F0

ñ
00F1

ò
00F2

ó
00F3

ô
00F4

õ
00F5

ö
00F6

÷
00F7

ø
00F8

ù
00F9

ú
00FA

û
00FB

ü
00FC

ý
00FD

þ
00FE

ÿ
00FF

8

€
20AC

‚
201A

ƒ
0192

„
201E

…
2026

†
2020

‡
2021

ˆ
02C6

‰
2030

Š
0160

‹
2039

Œ
0152

Ž
017D

9

‘
2018

’
2019

“
201C

”
201D

•
2022

–
2013

—
2014

˜
02DC

™
2122

š
0161

›
203A

œ
0153

ž
017E

Ÿ
0178

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Positions 81, 8D, 8F, 90, and 9D are unused.Identical to ASCII

Dubberly Design Office / Understanding Digital Typography 28

Windows-1252 or CP-1252 is a Latin alphabet character encoding 
system, used by default in legacy components of Microsoft Windows 
in English and some other Western languages. It is one of many 
Windows codepages and includes almost all of the same characters 
as Mac OS Roman codepage but assigns them to different positions.

Windows 1252 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



Dubberly Design Office / Understanding Digital Typography 29

ISO/IEC 8859 was designed in the mid-1980s by the European Com-
puter Manufacturer’s Association (ECMA). Later, development of the 
codepage layouts was taken over by the International Organization 
for Standardization (ISO) and International Electrotechnical Commis-
sion (IEC). The project was an attempt to create a universal standard 
for code pages. Over time it grew to include 16 codepages, enough 
to cover all Latin-based scripts and then some. However it never ad-
dressed Chinese, Japanese, or Korean scripts (CJK). It was a precur-
sor to the Unicode standard.

Between all 16 codepages, ISO/IEC 8859 covered 2,176 possible 
code points – the fi rst 128 code points of each codepage are 
identical to ASCII while the latter 128 are at least partially unique 
in each codepage. There are many shared characters between 
the codepages of ISO 8859. Characters identical to ISO 8859-1 are 
marked in all subsequent codepages. 

ISO/IEC 8859 

How Is Type Encoded?

Codepage 15 ISO/IEC 8859-15 Latin-9  A revision of 8859-1 that completes the coverage of French, Finnish, and Estonian.

Codepage 16 ISO/IEC 8859-16 Latin-10, South Eastern European  Intended for Albanian, Croatian, Hungarian, Italian, Polish, Romanian, and Slovene, 

but also covers Finnish, French, German, and Irish Gaelic (new orthography).

Codepage 2 ISO/IEC 8859-2 Latin-2, Central European  Supports those Central and Eastern European languages that use the Latin alphabet 

but need different diacritics compared to the Latin-1 set, including Bosnian, Polish, 

Croatian, Czech, Slovak, Slovene, Serbian, and Hungarian.

Codepage 1 ISO/IEC 8859-1 Latin-1, Western European  Perhaps the most widely used part of ISO/IEC 8859, covering most Western Euro-

pean languages: Danish (partial), Dutch (partial), English, Faeroese, Finnish (partial), 

French (partial), German, Icelandic, Irish, Italian, Norwegian, Portuguese, Rhaeto-

Romanic, Scottish Gaelic, Spanish, and Swedish. Languages from other parts of 

the world are also covered, including Eastern European Albanian, Southeast Asian 

Indonesian, as well as the African languages Afrikaans and Swahili.

Codepage 3 ISO/IEC 8859-3 Latin-3, Southern European Turkish, Maltese, and Esperanto.

Codepage 4 ISO/IEC 8859-4 Latin-4, Northern European Estonian, Latvian, Lithuanian, Greenlandic, and Sami.

Codepage 5 ISO/IEC 8859-5 Latin / Cyrillic  Covers mostly Slavic languages that use a Cyrillic alphabet including Belarusian, 

Bulgarian, Macedonian, Russian, Serbian, and Ukrainian (partial).

Codepage 6 ISO/IEC 8859-6 Latin / Arabic  Covers the most common Arabic language characters. Doesn’t support other 

languages using the Arabic script.

Codepage 7 ISO/IEC 8859-7 Latin / Greek  Covers the modern Greek language (monotonic orthography). Can also be used for 

Ancient Greek written without accents or in monotonic orthography, but lacks the 

diacritics for polytonic orthography.

Codepage 8 ISO/IEC 8859-8 Latin / Hebrew Covers the modern Hebrew alphabet as used in Israel. 

Codepage 9 ISO/IEC 8859-9 Latin-5, Turkish  Largely the same as ISO/IEC 8859-1, replacing the rarely used Icelandic letters with 

Turkish ones. It is also used for Kurdish.

Codepage 10 ISO/IEC 8859-10 Latin-6, Nordic  A rearrangement of Latin-4. Considered more useful for Nordic languages. Baltic 

languages use Latin-4 more.

Codepage 11 ISO/IEC 8859-11 Latin / Thai  Contains characters needed for the Thai language. Virtually identical to TIS 620.

Codepage 12 ISO/IEC 8859-12 Latin / Devanagari  Offi cially abandoned in 1997. 

Codepage 13 ISO/IEC 8859-13 Latin-7, Baltic Rim  Added some characters for Baltic languages which were missing from Latin-4 and -6.

Codepage 14 ISO/IEC 8859-14 Latin-8, Celtic Covers Celtic languages such as Gaelic and the Breton language.

Languages listed as “partial” are not fully expressible with that particular codepage.



A

NBSP
00A0

¡
00A1

¢
00A2

£
00A3

¤
00A4

¥
00A5

¦
00A6

§
00A7

¨
00A8

©
00A9

ª
00AA

«
00AB

¬
00AC

SHY
00AD

®
00AE

¯
00AF

B

°
00B0

±
00B1

²
00B2

³
00B3

´
00B4

µ
00B5

¶
00B6

·
00B7

¸
00B8

¹
00B9

º
00BA

»
00BB

¼
00BC

½
00BD

¾
00BE

¿
00BF

C

À
00C0

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Ð
00D0

Ñ
00D1

Ò
00D2

Ó
00D3

Ô
00D4

Õ
00D5

Ö
00D6

×
00D7

Ø
00D8

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

Ý
00DD

Þ
00DE

ß
00DF

E

à
00E0

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

ð
00F0

ñ
00F1

ò
00F2

ó
00F3

ô
00F4

õ
00F5

ö
00F6

÷
00F7

ø
00F8

ù
00F9

ú
00FA

û
00FB

ü
00FC

ý
00FD

þ
00FE

ÿ
00FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

Identical to ASCII

Dubberly Design Office / Understanding Digital Typography 30

Latin-1 / Western European

Note that in all of the ISO/IEC 8859 codepages, positions 0080 – 009F 
are used for control characters that were not present in Mac OS 
Roman or the Windows codepages. Often, these code points will 
be shown as blank or empty in representations of the 8859 pages, 
which is confusing and potentially misleading since they are not 
actually empty, rather they are used for non-printing characters.

This portion of the ISO/IEC 8859 encoding system has been carried 
forward as the fi rst 256 code points of the Unicode standard – the 
current standard for font encoding.

ISO/IEC 8859-1 

How Is Type Encoded? 

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

A

NBSP
00A0

Ą
0104

˘
02D8

Ł
0141

¤
00A4

Ľ
013D

Ś
015A

§
00A7

¨
00A8

Š
0160

Ş
015E

Ť
0164

Ź
0179

SHY
00AD

Ž
017D

Ż
017B

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to Latin-1

B

°
00B0

ą
0105

˛
02DB

ł
0142

´
00B4

ľ
013E

ś
015B

ˇ
02C7

¸
00B8

š
0161

ş
015F

ť
0165

ź
017A

˝
02DD

ž
017E

ż
017C

C

Ŕ
0154

Á
00C1

Â
00C2

Ă
0102

Ä
00C4

Ĺ
0139

Ć
0106

Ç
00C7

Č
010C

É
00C9

Ę
0118

Ë
00CB

Ě
011A

Í
00CD

Î
00CE

Ď
010E

D

Đ
0110

Ń
0143

Ň
0147

Ó
00D3

Ô
00D4

Ő
0150

Ö
00D6

×
00D7

Ř
0158

Ů
016E

Ú
00DA

Ű
0170

Ü
00DC

Ý
00DD

Ţ
0162

ß
00DF

E

ŕ
0155

á
00E1

â
00E2

ă
0103

ä
00E4

ĺ
013A

ć
0107

ç
00E7

č
010D

é
00E9

ę
0119

ë
00EB

ě
011B

í
00ED

î
00EE

ď
010F

F

đ
0111

ń
0144

ň
0148

ó
00F3

ô
00F4

ő
0151

ö
00F6

÷
00F7

ř
0159

ů
016F

ú
00FA

ű
0171

ü
00FC

ý
00FD

ţ
0163

˙
02D9

Identical to ASCII

Dubberly Design Office / Understanding Digital Typography 31

Latin-2 / Central European

ISO/IEC 8859-2 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

Ħ
0126

˘
02D8

£
00A3

¤
00A4

Ĥ
0124

§
00A7

¨
00A8

İ
0130

Ş
015E

Ğ
011E

Ĵ
0134

SHY
00AD

Ż
017B

B

°
00B0

ħ
0127

²
00B2

³
00B3

´
00B4

µ
00B5

ĥ
0125

·
00B7

¸
00B8

ı
0131

ş
015F

ğ
011F

ĵ
0135

½
00BD

ż
017C

C

À
00C0

Á
00C1

Â
00C2

Ä
00C4

Ċ
010A

Ĉ
0108

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Ñ
00D1

Ò
00D2

Ó
00D3

Ô
00D4

Ġ
0120

Ö
00D6

×
00D7

Ĝ
011C

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

Ŭ
016C

Ŝ
015C

ß
00DF

E

à
00E0

á
00E1

â
00E2

ä
00E4

ċ
010B

ĉ
0109

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

ñ
00F1

ò
00F2

ó
00F3

ô
00F4

ġ
0121

ö
00F6

÷
00F7

ĝ
011D

ù
00F9

ú
00FA

û
00FB

ü
00FC

ŭ
016D

ŝ
015D

˙
02D9

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 32

Latin-3 / South European

ISO/IEC 8859-3 

How Is Type Encoded? 

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

Ą
0104

ĸ
0138

Ŗ
0156

¤
00A4

Ĩ
0128

Ļ
013B

§
00A7

¨
00A8

Š
0160

Ē
0112

Ģ
0122

Ŧ
0166

SHY
00AD

Ž
017D

¯
00AF

B

°
00B0

ą
0105

˛
02DB

ŗ
0157

´
00B4

ĩ
0129

ļ
013C

ˇ
02C7

¸
00B8

š
0161

ē
0113

ģ
0123

ŧ
0167

Ŋ
014A

ž
017E

ŋ
014B

C

Ā
0100

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Į
012E

Č
010C

É
00C9

Ę
0118

Ë
00CB

Ė
0116

Í
00CD

Î
00CE

Ī
012A

D

Đ
0110

Ņ
0145

Ō
014C

Ķ
0136

Ô
00D4

Õ
00D5

Ö
00D6

×
00D7

Ø
00D8

Ų
0172

Ú
00DA

Û
00DB

Ü
00DC

Ũ
0168

Ū
016A

ß
00DF

E

ā
0101

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

į
012F

č
010D

é
00E9
233
ę
0119

ë
00EB

ė
0117

í
00ED

î
00EE

ī
012B

F

đ
0111

ņ
0146

ō
014D

ķ
0137

ô
00F4

õ
00F5

ö
00F6

÷
00F7

ø
00F8

ų
0173

ú
00FA

û
00FB

ü
00FC

ũ
0169

ū
016B

˙
02D9

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 33

Latin-4 / Northern European

ISO/IEC 8859-4

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

Ё
0401

Ђ
0402

Ѓ
0403

Є
0404

Ѕ
0405

І
0406

Ї
0407

Ј
0408

Љ
0409

Њ
040A

Ћ
040B

Ќ
040C

SHY
00AD

Ў
040E

Џ
040F

B

А
0410

Б
0411

В
0412

Г
0413

Д
0414

Е
0415

Ж
0416

З
0417

И
0418

Й
0419

К
041A

Л
041B

М
041C

Н
041D

О
041E

П
041F

C

Р
0420

С
0421

Т
0422

У
0423

Ф
0424

Х
0425

Ц
0426

Ч
0427

Ш
0428

Щ
0429

Ъ
042A

Ы
042B

Ь
042C

Э
042D

Ю
042E

Я
042F

D

а
0430

б
0431

в
0432

г
0433

д
0434

е
0435

ж
0436

з
0437

и
0438

й
0439

к
043A

л
043B

м
043C

н
043D

о
043E

п
043F

E

р
0440

с
0441

т
0442

у
0443

ф
0444

х
0445

ц
0446

ч
0447

ш
0448

щ
0449

ъ
044A

ы
044B

ь
044C

э
044D

ю
044E

я
044F

F

№
2116

ё
0451

ђ
0452

ѓ
0453

є
0454

ѕ
0455

і
0456

ї
0457

ј
0458

љ
0459

њ
045A

ћ
045B

ќ
045C

§
00A7

ў
045E

џ
045F

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 34

Latin / Cyrillic

ISO/IEC 8859-5 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

¤

00A4

،
060C

SHY

00AD

B

؛
061B

؟
061F

C

ء
0621

آ
0622

أ
0623

ؤ
0624

إ
0625

ئ
0626

ا
0627

ب
0628

ة
0629

ت
062A

ث
062B

ج
062C

ح
062D

خ
062E

د
062F

D

ذ
0630

ر
0631

ز
0632

س
0633

ش
0634

ص
0635

ض
0636

ط
0637

ظ
0638

ع
0639

غ
063A

E

ـ
0640

ف
0641

ق
0642

ك
0643

ل
0644

م
0645

ن
0646

ه
0647

و
0648

ى
0649

ي
064A

◌ً
064B

◌ٌ
064C

◌ٍ
064D

◌َ
064E

◌ُ
064F

F

◌ِ
0650

◌ّ
0651

◌ْ
0652

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 35

Latin / Arabic

Designed to cover languages using the Arabic alphabet. Only 
nominal letters are encoded, no preshaped forms of the letters, so 
shaping processing is required for display. It was never very popular. 

ISO/IEC 8859-6 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

‘
2018

’
2019

£
00A3

€
20AC

�
20AF

¦
00A6

§
00A7

¨
00A8

©
00A9

ͺ
037A

«
00AB

¬
00AC

SHY
00AD

―
2015

B

°
00B0

±
00B1

²
00B2

³
00B3

΄
0384

΅
0385

Ά
0386

·
00B7

Έ
0388

Ή
0389

Ί
038A

»
00BB

Ό
038C

½
00BD

Ύ
038E

Ώ
038F

C

ΐ
0390

Α
0391

Β
0392

Γ
0393

Δ
0394

Ε
0395

Ζ
0396

Η
0397

Θ
0398

Ι
0399

Κ
039A

Λ
039B

Μ
039C

Ν
039D

Ξ
039E

Ο
039F

D

Π
03A0

Ρ
03A1

Σ
03A3

Τ
03A4

Υ
03A5

Φ
03A6

Χ
03A7

Ψ
03A8

Ω
03A9

Ϊ
03AA

Ϋ
03AB

ά
03AC

έ
03AD

ή
03AE

ί
03AF

E

ΰ
03B0

α
03B1

β
03B2

γ
03B3

δ
03B4

ε
03B5

ζ
03B6

η
03B7

θ
03B8

ι
03B9

κ
03BA

λ
03BB

μ
03BC

ν
03BD

ξ
03BE

ο
03BF

F

π
03C0

ρ
03C1

ς
03C2

σ
03C3

τ
03C4

υ
03C5

φ
03C6

χ
03C7

ψ
03C8

ω
03C9

ϊ
03CA

ϋ
03CB

ό
03CC

ύ
03CD

ώ
03CE

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 36

Latin / Greek

ISO/IEC 8859-7 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

¢
00A2

£
00A3

¤
00A4

¥
00A5

¦
00A6

§
00A7

¨
00A8

©
00A9

ª
00AA

«
00AB

¬
00AC

SHY
00AD

®
00AE

¯
00AF

B

°
00B0

±
00B1

²
00B2

³
00B3

´
00B4

µ
00B5

¶
00B6

·
00B7

¸
00B8

¹
00B9

º
00BA

»
00BB

¼
00BC

½
00BD

¾
00BE

C D

‗
2017

E

א
05D0

ב
05D1

ג
05D2

ד
05D3

ה
05D4

ו
05D5

ז
05D6

ח
05D7

ט
05D8

י
05D9

ך
05DA

כ
05DB

ל
05DC

ם
05DD

מ
05DE

ן
05DF

F

נ
05E0

ס
05E1

ע
05E2

ף
05E3

פ
05E4

ץ
05E5

צ
05E6

ק
05E7

ר
05E8

ש
05E9

ת
05EA

LRM
200E

RLM
200F

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 37

Latin / Hebrew

ISO/IEC 8859-8 

How Is Type Encoded? 

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

¡
00A1

¢
00A2

£
00A3

¤
00A4

¥
00A5

¦
00A6

§
00A7

¨
00A8

©
00A9

ª
00AA

«
00AB

¬
00AC

SHY
00AD

®
00AE

¯
00AF

B

°
00B0

±
00B1

²
00B2

³
00B3

´
00B4

µ
00B5

¶
00B6

·
00B7

¸
00B8

¹
00B9

º
00BA

»
00BB

¼
00BC

½
00BD

¾
00BE

¿
00BF

C

À
00C0

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Ğ
011E

Ñ
00D1

Ò
00D2

Ó
00D3

Ô
00D4

Õ
00D5

Ö
00D6

×
00D7

Ø
00D8

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

İ
0130

Ş
015E

ß
00DF

E

à
00E0

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

ğ
011F

ñ
00F1

ò
00F2

ó
00F3

ô
00F4

õ
00F5

ö
00F6

÷
00F7

ø
00F8

ù
00F9

ú
00FA

û
00FB

ü
00FC

ı
0131

ş
015F

ÿ
00FF

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 38

Latin-5 / Turkish

ISO/IEC 8859-9 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

Ą
0104

Ē
0112

Ģ
0122

Ī
012A

Ĩ
0128

Ķ
0136

§
00A7

Ļ
013B

Đ
0110

Š
0160

Ŧ
0166

Ž
017D

SHY
00AD

Ū
016A

Ŋ
014A

B

°
00B0

ą
0105

ē
0113

ģ
0123

ī
012B

ĩ
0129

ķ
0137

·
00B7

ļ
013C

đ
0111

š
0161

ŧ
0167

ž
017E

―
2015

ū
016B

ŋ
014B

C

Ā
0100

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Į
012E

Č
010C

É
00C9

Ę
0118

Ë
00CB

Ė
0116

Í
00CD

Î
00CE

Ï
00CF

D

Ð
00D0

Ņ
0145

Ō
014C

Ó
00D3

Ô
00D4

Õ
00D5

Ö
00D6

Ũ
0168

Ø
00D8

Ų
0172

Ú
00DA

Û
00DB

Ü
00DC

Ý
00DD

Þ
00DE

ß
00DF

E

ā
0101

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

į
012F

č
010D

é
00E9

ę
0119

ë
00EB

ė
0117

í
00ED

î
00EE

ï
00EF

F

ð
00F0

ņ
0146

ō
014D

ó
00F3

ô
00F4

õ
00F5

ö
00F6

ũ
0169

ø
00F8

ų
0173

ú
00FA

û
00FB

ü
00FC

ý
00FD

þ
00FE

ĸ
0138

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 39

Latin-6 / Nordic

ISO/IEC 8859-10 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

ก
0E01

ข
0E02

ฃ
0E03

ค
0E04

ฅ
0E05

ฆ
0E06

ง
0E07

จ
0E08

ฉ
0E09

ช
0E0A

ซ
0E0B

ฌ
0E0C

ญ
0E0D

ฎ
0E0E

ฏ
0E0F

B

ฐ
0E10

ฑ
0E11

ฒ
0E12

ณ
0E13

ด
0E14

ต
0E15

ถ
0E16

ท
0E17

ธ
0E18

น
0E19

บ
0E1A

ป
0E1B

ผ
0E1C

ฝ
0E1D

พ
0E1E

ฟ
0E1F

C

ภ
0E20

ม
0E21

ย
0E22

ร
0E23

ฤ
0E24

ล
0E25

ฦ
0E26

ว
0E27

ศ
0E28

ษ
0E29

ส
0E2A

ห
0E2B

ฬ
0E2C

อ
0E2D

ฮ
0E2E

ฯ
0E2F

D

ะ
0E30

◌ ั
0E31

า
0E32

าํ
0E33

◌ ิ
0E34

◌ ี
0E35

◌ ึ
0E36

◌ ื
0E37

◌ุ
0E38

◌ ู
0E39

◌ฺ
0E3A

฿
0E3F

E

เ
0E40

แ
0E41

โ
0E42

ใ
0E43

ไ
0E44

ๅ
0E45

ๆ
0E46

◌ ็
0E47
231
◌ ่
0E48

◌ ้
0E49

◌ ๊
0E4A

◌ ๋
0E4B

◌ ์
0E4C

◌ํ
0E4D

◌ ๎
0E4E

๏
0E4F

F

๐
0E50

๑
0E51

๒
0E52

๓
0E53

๔
0E54

๕
0E55

๖
0E56

๗
0E57
247
๘
0E58

๙
0E59

๚
0E5A

๛
0E5B

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 40

Latin / Thai

ISO/IEC 8859-11 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



A B C D E F8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

Dubberly Design Office / Understanding Digital Typography 41

Latin / Devanagari

The work in making a 8859 codepage for Devanagari – an abugida 
(a segmental writing system based on consonants where vowels 
are secondary notation) alphabet used in India and Nepal – was 
never completed and offi cially abandoned in 1997. (See page 11 of 
Understanding Typography.)

ISO/IEC 8859-12 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

”
201D

¢
00A2

£
00A3

¤
00A4

„
201E

¦
00A6

§
00A7

Ø
00D8

©
00A9

Ŗ
0156

«
00AB

¬
00AC

SHY
00AD

®
00AE

Æ
00C6

B

°
00B0

±
00B1

²
00B2

³
00B3

“
201C

µ
00B5

¶
00B6

·
00B7

ø
00F8

¹
00B9

ŗ
0157

»
00BB

¼
00BC

½
00BD

¾
00BE

æ
00E6

C

Ą
0104

Į
012E

Ā
0100

Ć
0106

Ä
00C4

Å
00C5

Ę
0118

Ē
0112

Č
010C

É
00C9

Ź
0179

Ė
0116

Ģ
0122

Ķ
0136

Ī
012A

Ļ
013B

D

Š
0160

Ń
0143

Ņ
0145

Ó
00D3

Ō
014C

Õ
00D5

Ö
00D6

×
00D7

Ų
0172

Ł
0141

Ś
015A

Ū
016A

Ü
00DC

Ż
017B

Ž
017D

ß
00DF

E

ą
0105

į
012F

ā
0101

ć
0107

ä
00E4

å
00E5

ę
0119

ē
0113

č
010D

é
00E9

ź
017A

ė
0117

ģ
0123

ķ
0137

ī
012B

ļ
013C

F

š
0161

ń
0144

ņ
0146

ó
00F3

ō
014D

õ
00F5

ö
00F6

÷
00F7

ų
0173

ł
0142

ś
015B

ū
016B

ü
00FC

ż
017C

ž
017E

’
2019

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 42

Latin-7 / Baltic Rim

ISO/IEC 8859-13 

How Is Type Encoded? 

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

Ḃ
1E02

ḃ
1E03

£
00A3

Ċ
010A

ċ
010B

Ḋ
1E0A

§
00A7

Ẁ
1E80

©
00A9

Ẃ
1E82

ḋ
1E0B

Ỳ
1EF2

SHY
00AD

®
00AE

Ÿ
0178

B

Ḟ
1E1E

ḟ
1E1F

Ġ
0120

ġ
0121

Ṁ
1E40

ṁ
1E41

¶
00B6

Ṗ
1E56

ẁ
1E81

ṗ
1E57

ẃ
1E83

Ṡ
1E60

ỳ
1EF3

Ẅ
1E84

ẅ
1E85

ṡ
1E61

C

À
00C0

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Ŵ
0174

Ñ
00D1

Ò
00D2

Ó
00D3

Ô
00D4

Õ
00D5

Ö
00D6

Ṫ
1E6A

Ø
00D8

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

Ý
00DD

Ŷ
0176

ß
00DF

E

à
00E0

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

ŵ
0175

ñ
00F1

ò
00F2

ó
00F3

ô
00F4

õ
00F5

ö
00F6

ṫ
1E6B

ø
00F8

ù
00F9

ú
00FA

û
00FB

ü
00FC

ý
00FD

ŷ
0177

ÿ
00FF

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 43

Latin-8 / Celtic

ISO/IEC 8859-14 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

¡
00A1

¢
00A2

£
00A3

€
20AC

¥
00A5

Š
0160

§
00A7

š
0161

©
00A9

ª
00AA

«
00AB

¬
00AC

SHY
00AD

®
00AE

¯
00AF

B

°
00B0

±
00B1

²
00B2

³
00B3

Ž
017D

µ
00B5

¶
00B6

·
00B7

ž
017E

¹
00B9

º
00BA

»
00BB

Œ
0152

œ
0153

Ÿ
0178

¿
00BF

C

À
00C0

Á
00C1

Â
00C2

Ã
00C3

Ä
00C4

Å
00C5

Æ
00C6

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Ð
00D0

Ñ
00D1

Ò
00D2

Ó
00D3

Ô
00D4

Õ
00D5

Ö
00D6

×
00D7

Ø
00D8

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

Ý
00DD

Þ
00DE

ß
00DF

E

à
00E0

á
00E1

â
00E2

ã
00E3

ä
00E4

å
00E5

æ
00E6

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

ð
00F0

ñ
00F1

ò
00F2

ó
00F3

ô
00F4

õ
00F5

ö
00F6

÷
00F7

ø
00F8

ù
00F9

ú
00FA

û
00FB

ü
00FC

ý
00FD

þ
00FE

ÿ
00FF

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 44

Latin-9

ISO/IEC 8859-15 

How Is Type Encoded?

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



8

PAD
0080

HOP
0081

BPH
0082

NBH
0083

IND
0084

NEL
0085

SSA
0086

ESA
0087

HTS
0088

HTJ
0089

VTS
008A

PLD
008B

PLU
008C

RI
008D

SS2
008E

SS3
008F

9

DCS
0090

PU1
0091

PU2
0092

STS
0093

CCH
0094

MW
0095

SPA
0096

EPA
0097

SOS
0098

SGCI
0099

SCI
009A

CSI
009B

ST
009C

OSC
009D

PM
009E

APC
009F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL
0000

SOH
0001

STX
0002

ETX
0003

EOT
0004

ENQ
0005

ACK
0006

BEL
0007

BS
0008

HT
0009

LF
000A

VT
000B

FF
000C

CR
000D

SO
000E

SI
000F

1

DLE
0010

DC1
0011

DC2
0012

DC3
0013

DC4
0014

NAK
0015

SYN
0016

ETB
0017

CAN
0018

EM
0019

SUB
001A

ESC
001B

FS
001C

GS
001D

RS
001E

US
001F

2

SP
0020

!
0021

“
0022

#
0023

$
0024

%
0025

&
0026

‘
0027

(
0028

)
0029

*
002A

+
002B

,
002C

-
002D

.
002E

/
002F

3

0
0030

1
0031

2
0032

3
0033

4
0034

5
0035

6
0036

7
0037

8
0038

9
0039

:
003A

;
003B

<
003C

=
003D

>
003E

?
003F

4

@
0040

A
0041

B
0042

C
0043

D
0044

E
0045

F
0046

G
0047

H
0048

I
0049

J
004A

K
004B

L
004C

M
004D

N
004E

O
004F

5

P
0050

Q
0051

R
0052

S
0053

T
0054

U
0055

V
0056

W
0057

X
0058

Y
0059

Z
005A

[
005B

\
005C

]
005D

^
005E

_
005F

6

`
0060

a
0061

b
0062

c
0063

d
0064

e
0065

f
0066

g
0067

h
0068

i
0069

j
006A

k
006B

l
006C

m
006D

n
006E

o
006F

7

p
0070

q
0071

r
0072

s
0073

t
0074

u
0075

v
0076

w
0077

x
0078

y
0079

z
007A

{
007B

|
007C

}
007D

~
007E

DEL
007F

Identical to ASCII

A

NBSP
00A0

Ą
0104

ą
0105

Ł
0141

€
20AC

„
201E

Š
0160

§
00A7

š
0161

©
00A9

�
0218

«
00AB

Ź
0179

SHY
00AD

ź
017A

Ż
017B

B

°
00B0

±
00B1

Č
010C

ł
0142

Ž
017D

”
201D

¶
00B6

·
00B7

ž
017E

č
010D

�
0219

»
00BB

Œ
0152

œ
0153

Ÿ
0178

ż
017C

C

À
00C0

Á
00C1

Â
00C2

Ă
0102

Ä
00C4

Ć
0106

Æ
00C6

Ç
00C7

È
00C8

É
00C9

Ê
00CA

Ë
00CB

Ì
00CC

Í
00CD

Î
00CE

Ï
00CF

D

Đ
0110

Ń
0143

Ò
00D2

Ó
00D3

Ô
00D4

Ő
0150

Ö
00D6

Ś
015A

Ű
0170

Ù
00D9

Ú
00DA

Û
00DB

Ü
00DC

Ę
0118

�
021A

ß
00DF

E

à
00E0

á
00E1

â
00E2

ă
0103

ä
00E4

ć
0107

æ
00E6

ç
00E7

è
00E8

é
00E9

ê
00EA

ë
00EB

ì
00EC

í
00ED

î
00EE

ï
00EF

F

đ
0111

ń
0144

ò
00F2

ó
00F3

ô
00F4

ő
0151

ö
00F6

ś
015B

ű
0171

ù
00F9

ú
00FA

û
00FB

ü
00FC

ę
0119

�
021B

ÿ
00FF

Identical to Latin-1

Dubberly Design Office / Understanding Digital Typography 45

Latin-10 / South-eastern European

ISO/IEC 8859-16 

How Is Type Encoded?  

Unicode values for each character are 

listed in gray below the character. These 

do not necessarily match the hex code for 

the character on the current table.



Dubberly Design Office / Understanding Digital Typography 46

Big5 is a character encoding method used in Taiwan, Hong Kong, 
and Macau for traditional Chinese characters and BoPoMoFo 
(a.k.a zhuyin fuhao, BoPoMoFo is the offi cial Taiwanese system for 
phonetically transcribing Chinese). Big5 is a double byte encoding 
system capable of encoding thousands of characters; however it is 
always used in conjunction with a single byte encoding format such 
as ASCII for encoding non-Chinese characters. The Big5 encoding 
system is divided into zones, which are dedicated sub-groupings 
within the greater encoding system.

This format has been superseded by Unicode and is being phased 
out slowly.

Big5 

How Is Type Encoded?

0xA140 – 0xA3BF

0x8140 – 0xA0FE

Code Range

0xA3C0 – 0xA3FE

0xA440 – 0xC67E

0xC6a1 – 0xC8FE

0xC940 – 0xF9D5

0xF9D6 – 0xFEFE

Reserved for user-defi ned characters, e.g. 造字

Graphical characters, e.g. 圖形碼

Frequently used characters, e.g. 常用字

Less frequently used characters, e.g. 次常用字

Reserved, not for user-defi ned characters

Reserved for user-defi ned characters

Reserved for user-defi ned characters

Description

Big5 Encoding Zones



Dubberly Design Office / Understanding Digital Typography 47

Shift JIS is an encoding system originally developed by the ASCII 
corporation in conjunction with Microsoft for encoding the Japanese 
language. Many versions of Shift JIS exist, often with confl icting 
code points. Because of this, it is recommended that software 
applications use Unicode instead. Unlike most codepages, which are 
16 × 16 in size, Shift JIS is 94 × 94 in size, allowing for a total of 8,836 
possible code points (Shift JIS does not fi ll the entire code space). 

This format has been superseded by Unicode and is being phased 
out slowly.

Shift JIS

How Is Type Encoded?

Windows 1252

256 code points

in one codepage

16

94

64

16

94

64

ISO/IEC 8859

256 × 16 (4,096) code points

in 16 codepages

Shift JIS

8,836 code points

in one codepage



Dubberly Design Office / Understanding Digital Typography 48

Korean Graphic Character Set for Information Interchange (KS X 
1001) is a South Korean character encoding for hangul and hanja 
ASCII, Greek, Cyrillic, and Japanese kana. KS X 1001 is arranged as 
94 × 94 table (similar to Shift JIS).

This format has been superseded by Unicode and is being phased 
out slowly.

KS X 1001

How Is Type Encoded?

Windows 1252

256 code points

in one codepage

16

94

64

16

94

64

ISO/IEC 8859

256 × 16 (4,096) code points

in 16 codepages

Shift JIS

8,836 code points

in one codepage



Dubberly Design Office / Understanding Digital Typography 49

Unicode dates to 1987, when Joe Becker from Xerox and Lee Collins 
and Mark Davis from Apple started investigating the practicalities 
of creating a universal character set. The original proposal was for 
a 16-bit encoding system (65,563 code points) that would be able 
to handle “all the world’s living languages”. In 1996, the Unicode 
Consortium, the organization that governs development of the 
standard, published Unicode 2, which expanded the standard to a 
21-bit system so as to no longer be restricted to 16 bits. This added
encoding space allowed for the encoding of many historic scripts
(e.g. Egyptian Hieroglyphs) and thousands of rarely-used or obsolete
characters that had not been anticipated as needing encoding.

Unicode can be implemented by different character encodings. 
The most commonly used encodings are UTF-8 (which uses one byte 
for any ASCII characters and retains the ASCII code values, and up to 
four bytes for other characters) and UTF-16. The fi rst 256 code points 
were made identical to the content of ISO 8859-1 so as to make it 
trivial to convert existing western text. 

The current version of Unicode is divided into 17 “planes” – 
groups of code points designated for specifi c types of characters. 
Each plane has 65,536 (= 216) code points. This results in a total 
of 1,114,112 code points*. Currently, about ten percent of the 
potential space is used. Ranges of characters have been tentatively 
mapped out for every current and ancient writing system the 
Unicode consortium has been able to identify. While Unicode may 
eventually need to use another of the spare 11 planes for ideographic 
characters, other planes remain, if previously unknown scripts with 
tens of thousands of characters are discovered. This 21-bit limit is 
therefore unlikely to be reached in the near future.

* The system to handle this many code points is slightly awkward
because a 20-bit (220) system could handle only 1,048,576 code
points, so the designers had to move to a 21-bit system of encoding
that has the potential to handle 2,097,152 code points. There is no
discussion of whether there any plans to make use of the greater
possible capacity of a 21-bit system.

Unicode 

How Is Type Encoded?

Basic Supplementary

0000–FFFF 10000–1FFFF 20000–2FFFF 30000–DFFFF E0000–EFFFF F0000–10FFFF

Plane 0:

Basic Multilingual

(BMP)

Plane 1:

Supplementary 

Multilingual

(SMP)

Plane 2:

Supplementary 

Ideographic

(SIP)

Planes 3–13:

Unassigned

(–)

Plane 14:

Supplementary 

Special Purpose

(SSP)

Plane 15–16:

Private Use Area

(PUA)

0000–0FFF

1000–1FFF

2000–2FFF

3000–3FFF

4000–4FFF

5000–5FFF

6000–6FFF

7000–7FFF 

8000–8FFF

9000–9FFF

A000–AFFF

B000–BFFF

C000–CFFF

D000–DFFF

E000–EFFF

F000–FFFF

20000–20FFF

21000–21FFF

22000–22FFF

23000–23FFF

24000–24FFF

25000–25FFF

26000–26FFF

27000–27FFF

28000–28FFF

29000–29FFF

2A000–2AFFF

2B000–2BFFF

2F000–2FFFF

E0000–E0FFF10000–10FFF

11000–11FFF

12000–12FFF

13000–13FFF

16000–16FFF

1B000–1BFFF

1D000–1DFFF

1F000–1FFFF

Plane 0 covers 65,536 code 

points, many more than 

ISO 8859, which could have 

covered 2,176 but actually 

covered far fewer (under 

1,000) because there were 

many repeating characters. 

All of IS0 8859’s covered 

characters are also covered 

by Unicode. Unlike the 

way in which all of the ISO 

8859 parts were backwards 

compatible with ASCII, the 

only portion of Unicode’s 

mapping that matches 

ISO 8859 is the fi rst 256 

characters, which match 

ISO 8859-1, the rest have 

been re-mapped.

All of ISO 8859 would fi t in 

this cluster

– 15: PUA-A

F0000–FFFFF

16: PUA-B

100000–10FFFF

Unicode Planes & Code Point Ranges

The entirety of Unicode’s character 

encoding map can be found online at: 

www.unicode.org/charts/

The Unicode consortium’s credo is:

Unicode provides a unique number for every character,

no matter what the platform,

no matter what the program,

no matter what the language.



Dubberly Design Office / Understanding Digital Typography 50

The fi rst Unicode plane (Plane 0), the Basic Multilingual Plane (BMP), 
is where most characters have been assigned. The BMP contains 
characters for almost all modern languages, and a large number of 
special characters. A primary objective for the BMP is to support the 
unifi cation of prior character sets as well as characters for writing. 
Most of the allocated code points in the BMP are used to encode 
Chinese, Japanese, and Korean (CJK) characters.

Unicode:  

Basic Multilingual Plane

How Is Type Encoded?

Basic Multilingual Plane 

Plane 0

Each numbered box 

represents 256 code points

(65,536)

ASCII

(128)

ISO 8859

(2,176 possible)

ISO 8859 would fi t in this space, 

however except for the fi rst 256 

code points (box 00), it does not 

map directly to it. Also, the actual 

characters covered by ISO 8859 

would need far fewer code points 

than the area circled because of 

the high number of repeats.

0



Dubberly Design Office / Understanding Digital Typography 51

Unlike the previously discussed character encoding systems, which 
can be only implemented in one way, Unicode code points can be 
mapped to “code values” (sequences of values, e.g. 00410A) in several 
ways. There are several versions of the Unicode Transformation 
Format (UTF), most notably UTF-8, UTF-16, and UTF-32. 

While these three versions of UTF can all represent every 
character in the Unicode character set, they perform their encoding 
in different ways. UTF-8 is the only one of these versions of UTF that 
is backward-compatible with ASCII. The other primary difference 
between the versions is that while UTF-8 and UTF-16 are variable 
width encoding, UTF-32 is fi xed width encoding. Variable width 
encoding uses fewer bytes for lower numerical values. Fixed width 
encoding uses the same number of bytes for all code points. Variable 
width encoding is more effi cient than fi xed width encoding. For 
these and other reasons, UTF-8 has become the dominant character 
encoding for the World-Wide Web, accounting for more than half of 
all webpages.

In webpages, the character encoding is indicated in the header 
of the fi le:

<Content-Type: text/html; charset=utf-8>

Unicode:  

8 vs 16 vs 32

How Is Type Encoded?

010000 – 03FFFF

040000 – 10FFFF

1 byte

UTF-8

2 bytes

3 bytes

4 bytes

2 bytes

UTF-16

4 bytes

4 bytes

UTF-32

000080 – 00009F

000000 – 00007F

Code Range (hexadecimal)

0000A0 – 0003FF

000400 – 0007FF

000800 – 003FFF

004000 – 00FFFF

Number of Bytes per Code Point 

for Different Unicode Ranges

Basic Multilingual Plane (Plane 0)

ASCII

ISO 8859

(up to 000880)

One curiosity is that while UTF-8 

encodes points 000600 – 00FFFF in 3 

bytes, this is not necessary. It is unclear 

why this would be done.



Dubberly Design Office / Understanding Digital Typography 52

Just because the Unicode standard exists does not mean all fonts 
make use of its possibilities. Today most typefaces still only work 
with a 256 character set. The barriers to taking full advantage of 
the Unicode standard are mainly time: designing a typeface, in a 
single weight and style, for the Latin-1 set can take months, possibly 
years. Creating the glyph drawings for the full Unicode Plane 0 is a 
massive undertaking.

Unicode:  

Fonts

How Is Type Encoded?

Arial

Name

Arial Unicode MS

Caslon Roman

GNU Unifont

Bitstream Cyberbit

Code2000 *

HAN NOM A

Bitstream Cyber CJK

DejaVu Sans

Lucida Grande

FreeSerif

Microsoft Sans Serif

New Gulim

Tahoma

Times New Roman

TITUS Cyberbit Basic

WenQuanYi Bitmap Song

WenQuanYi Zen Hei

WenQuanYi Micro Hei

Y.OzFontN

* While Code2000 has many characters, the quality of Latin & Hangul is poor.

3,415

Characters (#)

38,917

3,683

63,446

32,961

53,068

32,328

30,275

5,467

2,245

7,203

2,788

46,567

1,912

2,790

9,209

41,295

42,285

34,707

21,957

3,415

Glyphs (#)

50,377

3,686

63,449

50,377

63,546

34,147

28,686

5,762

2,826

8,995

3,077

49,284

3,412

3,414

10,044

154,997

43,643

48,755

57,621

756 KB

File Size

22.10 MB

3.70 MB

15.5 MB

12.70 MB

7.98 MB

20.30 MB

12.40 MB

667 KB

1.07 MB

1.60 MB

637 KB

24.50 MB

681 KB

816 KB

1.91 MB

-

16.00 MB

-

13.50 MB

OTF + TTO

Font Format

OTF + TTO

TTF

Bitmap, TTF

TTF

TTF

TTF

TTF

OTF + TTO

OTF

TTF

OTF + TTO

TTF

OTF + TTO

OTF + TTO

TTF

Multi-strike bitmap

TTC

TTC

TTC

Sources:

www.creativepro.com/blog/typetalk-character-reference

Multi-language “Super Fonts”



Dubberly Design Office / Understanding Digital Typography 53

Early computer systems were designed to support only one writing 
direction, typically left-to-right. Adding new character encodings 
enabled a number of new left-to-right scripts to be supported, but 
did little to aid in the use of right-to-left scripts. Beyond providing a 
way to encode more than a million characters, Unicode is important 
because it added support for bi-directional scripts: text containing 
both directions in a single line. Unicode accomplishes this by 
assigning a direction and strength to all characters. All areas of the 
code map have a default direction assigned to them, e.g. all code 
points that fall within the Arabic section of Plane 0 by default will 
run from right-to-left. All characters also have a strength. “Strong” 
characters, such as letters, have a direction that they always adhere 
to. “Weak” characters, such as numerals and punctuation, have a 
direction that they use when on their own, however when they are 
inside a string of strong characters they rely on the direction of those 
strong characters.

Unicode:  

Bi-direction

How Is Type Encoded?

A single line of editable text can have multiple reading directions. The 

string above (  [ ábǧadı̄],  [hiǧā́ ı̄]) reads right-to-left but the numbers 

are read left-to-right (“1968”) as compared to right-to-left (“8691”).

First

right-to-left

Third

right-to-left

Second

left-to-right



Dubberly Design Office / Understanding Digital Typography 54

GB18030 is a Chinese government encoding standard published in 
2000. Prior to GB18030, the primary encoding standard used was 
GBK (Guojia Biaozhun Extension), which was developed in 1996 and 
encoded 21,886 characters. GBK was an extension of GB2312, which 
encoded 7,445 characters. GBK incorporated the Unifi ed Han portion 
of Unicode 2.1 that goes beyond the character repertoire of GB2312. 
GB18030 extends GBK further, incorporating the remainder of the 
Unicode 3.0 code space.

GB18030 is not perfectly compatible with Unicode however, and 
does not map directly to it. GB18030 can cover a total of 1,587,600 code 
points (more than Unicode’s 1,114,112), leaving about 500,000 byte 
sequences in GB18030 unassigned. 

GB18030

How Is Type Encoded?

000080 – 00009F

000000 – 00007F

Code Range (hexadecimal)

0000A0 – 0003FF

000400 – 0007FF

000800 – 003FFF

004000 – 00FFFF

010000 – 03FFFF

040000 – 10FFFF

1 byte1 byte

UTF-8GB18030

2 bytes2 bytes

Characters 

encoded here are 

inherited from 

GB2312 / GBK

3 bytes

4 bytes4 bytes

2 bytes

UTF-16

4 bytes

4 bytes

UTF-32

Comparison of GB 18030 

to Unicode Versions UTF-8, UTF-16, UTF-32



5555

How Are Character Shapes Represented?
The technology for representing a character has evolved over 

time from symbols hand-drawn with a stylus, brush, or pen to 

characters pressed onto paper by solid blocks of metal bearing 

raised, reversed characters to digital coordinate outlines resized, 

transformed, and set by mathematical formulas. Type design for 

metal required the designer to conceive not only of the overall 

look of the typeface but each size-specifi c version with its own 

optical tweaks and variations. Type design was about creating 

a unifi ed set of sets. Digital type can be any size and modern 

technology means it can be reproduced in a bewildering number 

of ways – printed on paper, fabric, or plastic; displayed on all sorts 

of computer screens; standing still or animated and morphed in 

three dimensions. 

Dubberly Design Office / Understanding Digital Typography



Dubberly Design Office / Understanding Digital Typography 56

Bitmap Fonts 

Bitmap or raster fonts were designed to work within the constraints 
of low-resolution computer monitors. Bitmap fonts, like metal fonts, 
had to be designed for specifi c point sizes. For example, a bitmap font 
fi le would typically contain 9, 12, 18, and 24 pixels-per-em (PPEm*) 
bitmap sets. If a user tried to use the font at a size that was not part of 
the pre-designed set, the rendering engine would pick the nearest size 
and reduce it to fi t. At small sizes this often led to very poor results.

Today bitmap fonts are less common on PCs due to higher 
resolution monitors and greater processing power. However there are 
still many devices with simple display technology that still make use 
of bitmap fonts. 

* Computer display resolutions are measured in pixels-per-inch
(PPI). In the 80s, Microsoft set the default PPI for their operating
system at 96 PPI. Apple set the default PPI for their computers at 72 PPI
to corresponded with the traditional typographic standard of 72 points
in an inch. Type set at 72 PPI on screen should be exactly the same
size as 72 point type on paper. While this was useful in 1984, screen
resolutions today are typically much higher than 72 PPI. Pixels-per-em
(see page 59 of Understanding Typography for more information on
ems), or PPEm, is the height of a bitmap character’s bounding box in
pixels. How big a font of a given PPEm appears on a screen depends
on the physical size of the pixels themselves. For example, a 24 PPEm
glyph displayed on a 1984 Macintosh monitor would be 24 points
tall (about 1/3 inch). The same glyph displayed on a 96 PPI Windows
monitor would be 18 points tall (about 1/4 inch). Each glyph would be
24 pixels high – it’s just that the Mac monitor pixels are taller.

How Are Character Shapes Represented?

The typeface Chicago, as seen on the third generation iPod. Chicago was 

originally designed as a bitmap font for the Macintosh, but it was redrawn as 

an outline font when the Macintosh computer had enough processing power 

to render screen bitmaps from outlines.

A bitmap glyph. The design of a bitmap font is very crude when compared to 

type design for metal or photo-setting. The font is composed of square units 

that are either on or off. There are no partial units.



Dubberly Design Office / Understanding Digital Typography 57

Digital Font File Formats 

An overview of the major digital font fi le formats.

How Are Character Shapes Represented?

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

IK

— Peter Karow

The format used with 

Ikarus – type design and 

production software devel-

oped by the URW foundry. 

IK was used for converting 

existing typefaces and 

logos into digital format 

for use on computer driven 

printing, plotting, and sign 

cutting devices.

Web Open Font Format

— Mozilla & Microsoft 

A font format for use in 

webpages. The World 

Wide Web Consortium 

(W3C) expects WOFF to 

soon become the “single, 

interoperable [font] 

format” supported by all 

browsers. WOFF is es-

sentially a wrapper that 

contains sfnt-based fonts 

(TrueType, OpenType, or 

Open Font Format) that 

have been compressed 

using a WOFF encoding 

tool to enable them to be 

embedded in a webpage.

Graphite

— SIL

Based on TrueType, 

adds three of its own 

tables and allows for all 

kinds of smart rendering 

rules, including glyph 

substitution, insertion, 

and rearrangement.

Embedded OpenType

— Microsoft 

A compact form of Open-

Type fonts designed for 

use as embedded fonts on 

webpages. Never adopted 

by anyone other than 

Microsoft. 

TrueDoc

— Bitstream

Encoded fonts for use in 

webpages.

OpenType

— Microsoft & Adobe 

Intended to supersede 

both TrueType and Post-

Script Type 1. Notable 

for being able to encode 

outlines in either TrueType 

(quadratic) or PostScript 

Type 2/Compact Font For-

mat (cubic) forms. 

TrueType

— Apple

Developed as a competitor 

to PostScript. TrueType’s 

primary strength was that 

it offered type develop-

ers pixel-level control of 

how fonts were displayed 

at various sizes thanks 

to a more robust hinting 

system.

Multiple Master

— Adobe

An extension to PostScript 

Type 1 fonts, Multiple 

Master fonts contained 

two or more “masters” 

and enabled a designer 

to interpolate between 

these along a continuous 

range or “axis”. Multiple 

Master fonts are no longer 

produced, but the technol-

ogy is used in modern 

type design tools to allow 

designers to generate in-

termediate font weights.

Intellifont

— Tom Hawkins 

Scalable font technology 

from Compugraphic 

in Wilmington, 

Massachusetts

PostScript Type 1 

& Type 3

— Adobe 

Introduced as part of the 

PostScript page descrip-

tion language. It did not 

see widespread use until 

March 1985, when Apple 

introduced the fi rst laser 

printer to use PostScript. 

The primary differences 

between the Type 1 and 

Type 3 formats was that 

Type 1 included support 

for “hinting” to help low 

resolution rendering 

and required a licensing 

fee while Type 3 did not 

support hinting and was 

free. The PostScript Type 

1 specifi cation was made 

public and free shortly 

after the development of 

TrueType by Apple.  

Speedo

— Bitstream

Obsolete, used in very ear-

ly versions of WordPerfect 

and Microsoft Windows.

F3

—  Folio Inc. 

Metafont

— Donald Knuth 

A programming language 

used to defi ne vector 

fonts. It is also the name 

of the interpreter that 

executes Metafont code to 

generate the bitmap fonts.



Dubberly Design Office / Understanding Digital Typography 58

Ikarus 

Designed in 1975 by Peter Karow while working at the URW type 
foundry, Ikarus is a type design and production software tool for 
converting existing typefaces and logos into digital format for use on 
computer driven printing, plotting, and sign cutting devices. Ikarus 
uses a spline model of outline description, storing the outline as a set 
of coordinates and arc radii. This abstract mathematical approach 
allowed for a perfectly scalable description of each glyph. The curve 
segments are all circle arcs, with tangent continuity at the joints. 
Because of the nature of curves in Ikarus, complex curve shapes 
required many segments.

Trivia fact #1: The original work for Ikarus came from programs for designing 

ship’s hulls.

Trivia fact #2: Ikarus got its name because of the frequency with which it crashed in 

the early days of development, likening it to the Greek character of Icarus (“Ikarus” 

is the German spelling).

How Are Character Shapes Represented?

A lower-case “a” drawn in Ikarus. The small tick marks demarcate the edges of 

curves; the < symbols mark tangent points, and the larger ticks mark corners. 

Note how many arcs are required to compose some of the curves on the shape.

It takes 8 arcs to make this curve!



Dubberly Design Office / Understanding Digital Typography 59

Metafont 

Designed by Donald Knuth in 1977, Metafont is a typeface design and 
description language. Instead of storing glyphs as sculpted objects 
(metal) or images (phototype), Metafont stores glyphs as a set of 
numbers that can be interpreted by a set of equations. Unlike outline 
font descriptions, Metafont works by defi ning a stroke (or strokes) 
with fi nite-width “pens”, along with fi lled regions. Thus, instead of 
describing the glyph as a fi lled outline that is the image of the glyph, 
Metafont describes pen paths. Some simple Metafont fonts (e.g. 
Computer Modern) use a single pen stroke with a relatively large pen 
to defi ne each stroke of a glyph. Other Metafont fonts use two paths, 
the space between which would be fi lled (this working in a similar 
way to an outline font). 

Since the font shapes are defi ned by equations rather than 
directly-coded numbers, it is possible to treat parameters such as 
aspect ratio, font slant, stroke width, serif size, and so forth as input 
parameters in each glyph defi nition (which then defi ne not a single 
font, but a meta-font). Thus, by changing the value of one of these 
parameters at one location in the Metafont fi le, one can produce a 
consistent change throughout the entire font.

How Are Character Shapes Represented?

   A simple Metafont font and the code used to 

produce it:

 1 beginlogochar(“F”, 14);

2 x1 = x2 = x3 = leftstemloc;

3 x4 = w - x1 + ho;

4 x5 = x4 - xgap;

5 y2 = y5;

6 y3 = y4;

7 bot y1 = -o;

8 top y3 = h;

9 y2 = barheight;

 10 draw z1

 11  -- z3

 12  -- z4;

 13 draw z2

 14 -- z5;

 15 labels(1, 2, 3, 4, 5);

 16 endchar;

   What this means:

1 Make an “F”, it is glyph 14

 2  1, 2, & 3 are aligned horizontally, 

3 4 is to the right of 1

4 5 is to the left of 4

5 5 is level with 2

6 4 is level with 3

7 1 is at the bottom

8 3 is at the top

9 2 is in the middle

 10 Draw a line from 1

 11 (through 2) to 3

 12 then on to 4

 13 Draw a line from 2

 14 to 5

 15 Label the points

 16 Stop, the character is drawn

   What isn’t included here is what the height, 

width, mid-point, and “gap” dimensions are. This 

would have been defi ned in a global table used 

for the entire font.

A more complex Metafont font. The defi nition for 

this font would have 2 paths and a fi ll between 

them. Unlike an outline font though, the weight 

of the font can be altered easily by changing 

the stroke thickness (this will also result in the 

terminals being rounder.

A mo

this f

them

of th

the s

term

2

1

3 4

5



Dubberly Design Office / Understanding Digital Typography 60

Contemporary font fi les almost all use one of two outline formats: 
PostScript or TrueType. This naming scheme is confusing because 
PostScript and TrueType are the names of both outline formats 
(PostScript cubic curves and TrueType quadratic curves) and font 
fi le formats (PostScript Type 1 fonts and TrueType fonts), which 
are not the same thing. Modern font formats such as OpenType 
and Web Open Font Format (WOOF) still use either PostScript or 
TrueType outline formats at their core. However, while PostScript 
Type 1 fonts can only use PostScript outlines, and TrueType fonts 
can only use TrueType outlines, OpenType fonts can use either 
PostScript or TrueType outlines, but OpenType cannot mix outline 
formats in a single font fi le.

At the most basic level, the difference between the two outline 
formats is purely mathematical: PostScript uses cubic Bézier curves 
while TrueType uses quadratic B-splines. Quadratics are simpler 
than cubics, and for simple shapes should require fewer points. For 
example, a circle described with cubic curves requires 12 points 
while the same circle as described by quadratic curves should only 
need 8 (though the author has never been able to produce one in 
practice). For more complex shapes – and glyphs are rarely simple – 
cubic curves typically have fewer points. 

PostScript outlines consist of “nodes” and “control handles”, 
with the control handles being used to manipulate the curve between 
any two adjacent nodes. Each node can have a maximum of two 
handles. TrueType has “on-curve” and “off-curve” points. Between 
any two on-curve points there may be many off-curve points. Both 
formats can be scaled in an infi nitely smooth and precise manner. This 
works very well with high resolution output devices such as printers. 
However, when resolution is limited, for example, on a computer 
monitor, rendering problems can arise.

Converting between the two formats is a lossy process due 
to rounding errors. The errors are greater when converting from 
PostScript to TrueType.

PostScript & TrueType 

How Are Character Shapes Represented?

Sources:

www.truetype-typography.com/articles/ttvst1.htm 

blogs.adobe.com/typblography/2010/12/the-benefi ts-of-opentypecff-over-truetype.html

developer.apple.com/fonts/TTRefMan/RM01/Chap1.html

PostScript Uses Cubic Curves

When drawing a font using these curves, the user places “nodes” (the 

green dots) that defi ne the general outline, and then uses “control 

handles” to defi ne the curve (if any) between the nodes. Each node can 

have two handles, one in each direction. In the example above, there 

are a total of eight nodes (four for the outer shape and four for the inner 

shape), each of which have two control handles, for a total of 24 points 

(or coordinates). If the lines defi ned by a node and its two handles are 

continuous, the connection is smooth. Otherwise, the connection is 

“sharp”, and the contours may change abruptly at the node. 

The arc between any two nodes 

is a single curve

The arc between any two nodes 

is defi ned by multiple polynomials

TrueType Uses Quadratic Curves

Drawing a quadratic curve is in some ways similar to drawing a cubic 

curve. However the way they are controlled is very different. This 

stems from the fact that while everything between nodes on a cubic 

curve is actually one curve mathematically, the line defi ned between 

two on-curve points (the red and larger blue squares above) of a 

quadratic curve is usually composed of two or more polynomials. 

These polynomials connect to form the curve, and individually they 

are mathematically simpler than a cubic bezier curve. Unfortunately, 

to construct a shape of any complexity, you need many polynomial 

segments (in the example above, there are three or four polynomials 

between each pair of on-curve points). This makes drawing a font 

outline tedious. First, the type designer must manipulate more points 

for any given curve. Second, not all polynomial points are connected 

directly to on-curve points: manipulating curves visually by hand often 

results in lumpy shapes.



Dubberly Design Office / Understanding Digital Typography 61

OpenType was developed in 1996 by Microsoft and Adobe with 
the intention that it would replace both PostScript and TrueType
font formats. The primary intention of OpenType was to provide 
robust cross-platform support for more writing systems. The format 
allows for far greater control of contextual shaping and “smart” 
typography, such as allowing a single font fi le to contain both lining 
and old style numerals as well as small caps, features that would 
have required separate fi les for each in PostScript and TrueType 
formats. This has been especially important for typography using 
non-alphabetic writing systems (e.g. abjad, abugida, etc.). OpenType 
also supports Unicode, and any OpenType font can have up to 
65,536 glyphs – the same number as a single Unicode plane. Unlike 
PostScript and TrueType, OpenType can use either cubic or quadratic 
curves (but only one at a time).

Open Font Format, 2009, is an open source specifi cation 
identical to OpenType 1.4.

OpenType

How Are Character Shapes Represented? Aside from better support for more language 

scripts, OpenType’s main advancement 

is the power to defi ne layout features. 

These features can be context-dependent 

substitutions such as ligatures, or they can be 

selectively activated by the user. Programs 

like Adobe InDesign support selective 

features turned on through menu commands. 

Examples of selective features include 

switching to small caps or alternate numeral 

forms by clicking a button. Prior to OpenType, 

setting small caps or alternate numeral forms 

would have required the user to select an 

entirely different font fi le containing the lesser 

used characters. With OpenType, they can all 

be included in the same font fi le. 

The example to the right shows the change 

from the standard glyphs to an alternate set 

(“c2sc” stands for “caps to small caps”, and 

“onum” stands for “old style numerals”). 

OpenType layout features are defi ned in code 

language developed by Adobe called the 

OpenType Feature Defi nition Language. It is 

considered the best way of defi ning layout 

features. The example to the right shows how 

the code is written for defi ning ligatures. 



Dubberly Design Office / Understanding Digital Typography 62

Not all font fi le formats allow for both types of curves. PostScript font 
fi les can only have PostScript cubic curves, while TrueType can only 
have quadratic curves. Modern font fi le formats can have either cubic 
or quadratic curves, but they cannot have both in the same font fi le.

On average OpenType font fi les are 20% – 50% smaller than 
comparable TrueType fonts due to: 

– File storage

OpenType relies on “subroutinization”, a process that surveys all
the glyphs in the font looking for path segments that are identical.
Identical path segments are replaced by a shared routine, which
reduces the amount of data in the fi le. TrueType has a similar
process, but it is not as effective as OpenType’s.

– Hinting data

OpenType font fi les have much less hinting data than TrueType font
fi les, again reducing the fi le size. When it comes to hinting, the two
formats have very different approaches. OpenType fonts prefer to
rely on the intelligence of the renderer more than TrueType, which
prefers to be as explicit as possible with hinting data and treats
the renderer as a “dumb” machine to carry out its very exacting
instructions. As rendering engines get better, OpenType’s method
may win out because it will require far less effort on the part of the
designer to achieve satisfactory results. Additionally, as rendering
engines improve, OpenType fonts improve with them, while TrueType
fonts do not!

File size differences have implications for webfonts, and they also 
have huge ramifi cations for CJK (Chinese, Japanese, Korean) fonts 
which contain tens of thousands of glyphs and fi les ranging around 
5 – 10 MB (or more!).

Contemporary Font Format 

Comparison 

How Are Character Shapes Represented?

Sources:

blog.typekit.com/2010/12/08/type-rendering-font-outlines-and-fi le-formats/

blogs.adobe.com/typblography/2010/12/the-benefi ts-of-opentypecff-over-truetype.html

Font File Formats Outline Formats

Cubic (PostScript) Quadratic (TrueType)

Superseded by 

OpenType

Notes

Only one format per 

font fi le

PostScript Type 1 (.pfm)

TrueType (.ttf)

OpenType (.otf)

Embedded OpenType (.eot)

Web Open Font Format (.woff)



63Dubberly Design Office / Understanding Digital Typography

Font rasterization is the process of converting a glyph outline 

description (as found in scalable fonts such as TrueType) 

to a raster or bitmap description and displaying it on screen. 

Rasterization usually takes place at the OS level and often 

involves some anti-aliasing of bitmaps to make them smoother 

and easier to read on screen. It may also involve hinting, 

that is, the use of pre-drawn pixel images for a particular font 

size to improve the appearance of the bitmap.

63

How Do Computers Display Type?



Dubberly Design Office / Understanding Digital Typography 64

The number of bits used to represent the color of a single pixel in a 
bitmapped image is called bit depth. At the low end, a depth of 1-bit 
means that a pixel can be either black or white (1-bit = 2 colors). As 
bit depth increases to 2-bits, the number of possible colors for each 
pixel is raised to a power of 2 (2-bit = 22 = 4 colors). Each additional 
bit increases the number of supported colors by a factor of two. 
For example, a bit depth of 4 = 24 = 16 colors; a bit depth of 8 = 28 = 
256 colors. 1-bit color depth is always monochromatic and typically 
black and white. 2-bit depth is usually black and white but may be 
color. 4-bit and beyond is typically color. The number of bits per pixel 
relates to image quality because a greater bit depth means there 
are more possible colors and shades available for any given pixel, 
allowing the image to be rendered with greater subtlety. 

Higher bit depth color spaces require more processing power 
from the computer, so the history of bit depth evolution closely 
mirrors the evolution of processing power in computer chips. 

Bit Depth

How Do Computers Display Type?

1-bit

21 = 2 grays

How a 

smooth gray ramp 

is rendered in:

2-bit

22 = 4 grays

4-bit

24 = 16 grays

8-bit

28 = 256 grays

0

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

255

3

2

1

0

Bit depth and resolution are independent factors that affect 

image quality. High bit depth is not the only way to achieve 

high quality images – is it possible to have a high quality 

image with low bit depth if the resolution is high enough. 

Often there is a trade-off to be made between high bit depth 

and high resolution.

Resolution

D
ep

th



Dubberly Design Office / Understanding Digital Typography 65

The outlines that describe glyph shapes have to be rasterized into 
pixels before they can be displayed on screen. The simplest way to 
render a glyph is to turn on any pixel whose center falls within the 
glyph outline. However, if the glyph outline inadvertently encloses 
too many – or too few – pixel centers the resulting onscreen 
character can be anything from ugly to unreadable. Missing pixels 
can pose as much of a problem as extra pixels.

Outline vs Pixel

How Do Computers Display Type?

Outline On the Grid

Notice that the outlines do not match up neatly with 

the grid.

Black and White Pixel Conversion

Creating a pixel shape based on whether the center 

of each grid square was inside or outside of the 

outline produces a strange form with some parts 

missing and others inconsistent.

Grayscale Pixel Conversion

Instead of pixels being on or off, this method 

determines the tone of each pixel based on how 

much of each pixel is inside or outside of the 

outline. The resulting form is less strange but 

appears blurry and might be hard to decipher at 

small sizes.



Dubberly Design Office / Understanding Digital Typography 66

Font hinting (also known as instructing) is the use of additional 
instructions to adjust the display of an outline font so that glyphs 
look better at small sizes. It was fi rst introduced in 1984 as part of 
the PostScript Type 1 font format as a way to reconcile the way data 
was stored (mathematical outlines) with the way the data would 
be output (pixels on screen, or dots from a printer). Several years 
later, TrueType would extend the power of hinting greatly, making 
it possible for designers to specify the appearance of glyphs at any 
and every size (and then some), but also making font design a far 
more time consuming process.

A font can be hinted either automatically (through processed 
algorithms based on the character outlines) or set manually. Most 
fonts are automatically hinted by the font drawing program (e.g. 
FontLab). Automatic hinting is handled by an engine inside the type 
design program that creates hints for all glyphs at a set of default 
sizes based on simple, generic rules designed to work well for as 
many typefaces as possible. While automatic hinting is suffi cient for 
many fonts, manually hinting is typical of higher quality typefaces 
because it usually takes into account special cases and problematic 
situations such as “dropout” cases, in which there are no full pixels 
within range of the outline and the rasterizer would render nothing, 
thus breaking the form of the glyph.

PPEm is an abbreviation for “pixels per em” – it is the unit 
of measurement type designers use when hinting to determine 
how many pixels will make up the em square. (See page 59 of 
Understanding Typography for more information on ems.) It is 
more accurate than giving a point size, because point size may vary 
between monitors that have different pixel resolutions. PPEm is 
resolution independent. A font hinted at 20 PPEm will have the same 
hints regardless of whether the monitor displaying the image is 72 dpi 
or 300 dpi – even though the displayed image will be very different in 
measurable size, it will be made of the same number of pixels. 

Hinting 

How Do Computers Display Type?

Unhinted (at 20 PPEm) 

Without any hinting, the pixel shape created from 

a font outline can bear little resemblance to the 

designer's intention. The most common problems 

with unhinted fonts are dropouts, irregular stem 

weights, and colliding pixels. Dropouts, or missing 

pixels, happen where parts of the font outline do 

not contain pixel centers. Irregular weights occur 

when the outline shape does fall neatly onto the grid 

and some stems, which are identical in the outline 

drawing, become different thicknesses in the pixel 

shape. Colliding pixels occur when two parts of 

the outline shape that are not supposed to touch 

generate overlapping pixels due the coarseness of 

the pixel grid. This problem can be severe when 

rendering complex characters (e.g. Chinese) with 

too few pixels. 

Base Hinted (at 20 PPEm)

Base hinting is used to preserve and regularize 

stems, features, and spacing at all sizes. The hinter 

(either a designer or engineer) can “link” stems to 

make sure that they are always the same weight. 

The hinter can also specify that parts of a glyph 

must always connect, thus preventing dropout. The 

example form above is now regularized and tidy, 

however it doesn’t match the outline very well.

Dropout

Irregular 

serif size

Missing 

serif

The outline is 

irregular, but the 

pixel shape is 

more accurate

A tidy pixel 

shape, but not 

very accurate

Irregular stem weights

Delta Hinted (at 20 PPEm)

Delta hints are size specifi c, and nudge a point to turn 

a pixel on or off. Delta hints go beyond base hinting to 

try to make the character shape at any given size more 

visually faithful to the designers intention. Notice how 

the outline shape is deformed but the pixel shape 

more closely resembles the original outline when 

compared to the previous illustration.



Dubberly Design Office / Understanding Digital Typography 67

When a computer digitizes a signal – like turning an analog form 
(e.g. the curve of a letter) into a digital form (e.g. a font bitmap), 
it can introduce spurious information. The technical term for this 
process is “aliasing”. 

In older systems, type was rendered in the simplest manner: 
pixels being either completely on or off with no intermediate 
gray values. Text displayed in this way was made from pre-drawn 
bitmaps of specifi c sizes. This method is very fast as it requires 
the fewest computational cycles to render type on screen. Outline 
font technology promised to allow any size font to be drawn on 
screen, not just fi xed, hand-drawn sizes. However, outline-generated 
bitmaps, especially at smaller sizes, were often illegible. Adobe 
PostScript changed this by allowing designers to include hints with 
the outline font fi le to make sure the rendered, aliased font aligned 
well to the screen grid. 

Aliasing 

How Do Computers Display Type?

Type rendered from an outline font fi le with no 

hinting shows the problem of aliasing.

Type rendered from an outline font fi le with hinting 

still shows aliasing, but the letterforms are better 

aligned to the screen grid. 



Dubberly Design Office / Understanding Digital Typography 68

Anti-aliasing reduces the effects of aliasing. Originally the technique 
was developed by engineers at MIT and Xerox, who called it half-bit-
ting. They recognized that the appearance of low-resolution screen 
fonts could be improved by taking advantage of computer screens’ 
ability to display intermediate gray values between black and white. 
Anti-aliasing works by determining how much of any given pixel is 
covered by the outline glyph to be rendered and then drawing that 
pixel with that percentage of black. This technique can produce 
blurry glyphs at small sizes. For instance, if a vertical stroke is sup-
posed to be one pixel wide, but falls half-way between two screen 
pixels, the result would be a 2 pixel-wide 50% gray line. Hinting is 
used for anti-aliasing, as for aliasing, to create pixel shapes that bet-
ter fi t the screen grid. However with anti-aliasing the resulting curves 
and diagonals appear smoother through the use of gray tones. 

Anti-Aliasing 

How Do Computers Display Type?

Type rendered from an outline font with no 

hinting – anti-aliasing improves the appearance 

compared to aliasing alone. 

Type rendered from an outline font with hinting 

and anti-aliasing. 



Dubberly Design Office / Understanding Digital Typography 69

LCD screens have square pixels that are each comprised of three 
“subpixels” – red, green, and blue vertical stripes. Because of the way 
the human visual system blurs and interpolates small visual elements, 
red, green, and blue light sources will combine to appear white if 
they are small enough. Further, below a certain size threshold, the 
human eye cannot perceive the color of a light source but can perceive 
intensity. Subpixel rendering exploits these characteristics of human 
vision to create single color letterforms that appear to be drawn at 
a higher resolution than the rest of the display. Subpixel rendering 
works best with black on white letters, but will work reasonably well 
with any solid color. Multicolored shapes do not work well at all and 
are often rendered with standard anti-aliasing.

Subpixel Rendering 

How Do Computers Display Type?

Subpixel rendering engines are included in:

– ClearType (Microsoft)

– DirectWrite (Microsoft)

– Mac OS X Quartz

– RISC OS

– Adobe CoolType (PDFs)

– FreeType

– D-Type Font Engine

Logical pixels. 

Subpixels on an LCD screen. The word 

here would appear white on black.

Perceived pixels.

Standard pixels are 

all the same color.

vs

Subpixels are 3 

colors in the same 

amount of space.

Subpixels

1 pixel1 pixel



Dubberly Design Office / Understanding Digital Typography 70

There are three basic onscreen rendering strategies: aliasing, anti-
aliasing, and subpixel rendering. Aliased text is very sharp at small 
sizes but often does not create a very accurate representation of an 
outline font. Anti-aliased type corrects for some of the accuracy is-
sues of aliased type but doesn’t go as far as subpixel rendering.

Subpixel rendering, however, only works on LCD and OLED 
(organic light emitting diode) displays, which have thin, vertical 
red, green, and blue light emitters. Subpixel rendering creates the 
most accurate shape in relation to the outline font but may result in 
signifi cant color fringing – the appearance of colored pixels at the 
edges of letters – an effect caused by the values of subpixels.

Comparing Rendering 

Strategies 

How Do Computers Display Type?

Actual size

10 pixels

Logical pixels

Monitor 

RGB pixels

Perceived pixels

Alias Anti-alias Subpixel rendering

S



Dubberly Design Office / Understanding Digital Typography 71

Rendering Engines Comparison 

How Do Computers Display Type?

Graphics Device Interface (GDI)

with ClearType enabled

Windows 7, Vista, and XP

ClearType does not anti-alias in the y-
direction. Note the abrupt, staircase-
like curves and color fringing in the 
capital “R” detail. The latest version 
of ClearType may not be present in a 
given Web browsing experience. 

S
o

u
rc

es
:

b
lo

g
.t

yp
ek

it
.c

o
m

/2
01

0
/1

0
/2

1/
ty

p
e

-r
en

d
er

in
g

-w
eb

-b
ro

w
se

rs
/

Graphics Device Interface (GDI) 

Windows 7, Vista, and XP 

Windows Standard anti-aliasing is 
in grayscale only. This is how most 
Windows XP users see type on 
the Web (unless they browse with 
Internet Explorer 7 or 8 because 
ClearType was turned on by default in 
those browsers) and how most users 
with CRT monitors see type as well.

Core Graphics (Quartz 2D)

Mac OS X and iOS

The Mac OS rendering engine tends 
to respect a typeface’s designed 
outlines as much as possible. This 
can make letters, as well as spaces 
within and among letters, seem 
blurry at small sizes. However, at very 
large sizes Core Graphics type looks 
natural and smooth. This is achieved 
with y-direction anti-aliasing, which 
is especially noticeable in the subtle 
curves of large letters.

Color fringing

DirectWrite

with ClearType enabled

Windows 7 and Vista

DirectWrite has less intense color 
fringing than the Mac OS and older 
Windows text rendering engines. 
There is y-direction anti-aliasing for 
smooth curves. DirectWrite pays 
more attention to the pixel grid and 
cleans up edges when possible. 

Y-direction

anti-aliasing

Graphics Device Interface (GDI) 

Windows 7, Vista, and XP

Rare. Almost all modern computers 
have the processing power to anti-
alias text. The user can intentionally 
choose to display aliased text or a 
setting in the font fi le disables anti-
aliasing for a given size.  

Aliasing Anti-aliasing Subpixel Rendering

No gray tones, 

pixels are either on or off

Lack of y-direction anti-aliasing, 

jagged “stair-like” curve



Dubberly Design Office / Understanding Digital Typography 72

Windows’ ClearType rasterizer tries to align characters to 
whole pixels vertically and sub-pixels horizontally. The Mac 
OS’ rasterizer tries to preserve the design of the typeface 
as much as possible, sometimes at the cost of legibility. 
Windows fonts look sharper on screen at the cost of looking 
less like the original font outline, especially at small sizes. 
Mac OS fonts look more like the original font outline with 
some loss of legibility at smaller sizes. Mac OS fonts tend to 
scale more smoothly than Windows fonts.

Windows’ rasterizing software produces extremely 
good results with a few built-in TrueType fonts, but sub-
optimal results with 99% of other typefaces because most 
fonts are not hinted correctly, extensively enough, or even 
at all. The Mac OS Core Text technology ignores font hinting 
completely and renders all fonts equally well regardless of 
their font format. Some argue that the Windows approach is 
better because, through hinting, it produces a sharper image. 
On the other hand, some advocate for the Mac approach 
with its “font-smoothing” algorithm because it produces 
more predictable results and a more accurate rendering in 
reference to the outline drawing.

Windows vs Mac 

How Do Computers Display Type?

Sources:

www.typotheque.com/articles/hinting

www.codinghorror.com/blog/archives/000885.html

www.atpm.com/12.01/paradigm.shtml

Note the variation in glyph shapes on Windows as 

compared to the relative consistency of the Mac OS 

results. The Windows approach is consistently sharper 

due to the lack of y-axis anti-aliasing and emphasis 

on pixel-fi tting. The Mac OS produces heavier weight 

glyphs due to the disregarding of hinting data.

No y-direction 
anti-aliasing

Yes y-direction 
anti-aliasing

“S” shape is relatively 
consistent

“S” shape changes 
between sizes

11px

12px

13px 13px

12px

11px

Less smooth scaling. 

Pixel-fi tting is emphasized. Much smoother scaling, but not perfect, 

especially at small sizes. 

Outline preservation is emphasized.

Scaling Glyph Shape Variety

Windows Windows Mac OSMac OS

SS



Dubberly Design Office / Understanding Digital Typography 73

Each operating system has at least one font rendering engine. Each 
browser decides which rendering engine (if there is more than one) 
and default settings to use. Therefore on the same OS, two browsers 
can produce text with very different appearances because they use 
different rendering engines. On top of that, rendering engines may 
differ between different versions of the OS and different versions 
of the browser may use different rendering engines. Lastly, default 
font-smoothing settings vary by OS and version, and can be 
overridden by users’ browser preferences. 

OS vs Browser

How Do Computers Display Type?

Subpixel rendering is on. Differences in font rendering between Safari and 

Internet Explorer (IE) are most apparent at small type sizes, where glyph 

shapes in Safari and IE are extreme. At larger sizes, the most noticeable dif-

ference between the two browsers is that Safari has y-direction anti-aliasing. 

Anti-aliasing is used for larger text while smaller text is aliased. Anti-aliasing is used for larger text while smaller text is aliased. The text here 

is pixel-by-pixel identical to Firefox. 

Subpixel rendering is on, however the results are markedly different when 

compared to Safari. Letters look lighter in weight, and often show divergence 

from the character outline shapes to neatly match the pixel grid. Note: Older 

versions of IE turn ClearType off when certain CSS attributes are activated, 

most notably the “fi lter” attribute. This is often used to set transparency set-

tings in IE because it does not conform to the CSS standard.

Look closely at the examples of the word “Search”. On Windows Vista, Safari and 

Internet Explorer both support subpixel anti-aliasing; Firefox and Chrome do not. 

Only Safari supports subpixel anti-aliasing in the y-direction. Safari for Windows 

may have its own built-in font rendering engine. Most browsers have their own 

layout engine but rely on core OS rendering engine to display glyphs. No other 

browser is known to have its own renderer.

Illustrations are 400% of actual size.

Operating System Rendering Engine

Mac OS X Core Graphics (Quartz 2D)

Windows  Graphics Device Interface (GDI)*

Linux FreeType

DirectWrite*

Safari Running on Windows Vista

Chrome Running on Windows Vista

Internet Explorer (IE) Running on Windows Vista

Firefox Running on Windows Vista

*  ClearType

optional



74Dubberly Design Office / Understanding Digital Typography 74

How Are Fonts Managed?



Dubberly Design Office / Understanding Digital Typography 75

Fonts that ship with an operating system are referred to as system 
fonts. Most users are not aware that system fonts are technically not 
free, as they were licensed by the maker of the operating system prior 
to launch. Unlike fonts that come packaged with applications or fonts 
bought from third-party vendors, system fonts cannot be deactivated. 

How Are Fonts Managed?

System Fonts 

AmericanTypewriter.dfont

Andale Mono.ttf

Apple Braille Outline 6 Dot.ttf

Apple Braille Outline 8 Dot.ttf

Apple Braille Pinpoint 6 Dot.ttf

Apple Braille Pinpoint 8 Dot.ttf

Apple Braille.ttf

Apple Chancery.dfont

Apple LiGothic Medium.dfont

Apple Symbols.ttf

AppleGothic.ttf

AquaKanaBold.otf

AquaKanaRegular.otf

Arial Black.ttf

Arial Bold Italic.ttf

Arial Bold.ttf

Arial Italic.ttf

Arial Narrow Bold Italic.ttf

Arial Narrow Bold.ttf

Arial Narrow Italic.ttf

Arial Narrow.ttf

Arial Rounded Bold.ttf

Arial Unicode.ttf

Arial.ttf

Baskerville.dfont

BigCaslon.dfont

Brush Script.ttf

Chalkboard.ttf

ChalkboardBold.ttf

Cochin.dfont

Comic Sans MS Bold.ttf

Comic Sans MS.ttf

Copperplate.dfont

Courier New Bold Italic.ttf

Courier New Bold.ttf

Courier New Italic.ttf

Courier New.ttf

Courier.dfont

Didot.dfont

Futura.dfont

Geeza Pro Bold.ttf

Geeza Pro.ttf

Geneva.dfont

Georgia Bold Italic.ttf

Georgia Bold.ttf

Georgia Italic.ttf

Georgia.ttf

GillSans.dfont

Hei.dfont

HelveLTMM

Helvetica LT MM

Helvetica.dfont

HelveticaNeue.dfont

Herculanum.dfont

Hiragino Kaku Gothic Pro W3.otf

Hiragino Kaku Gothic Pro W6.otf

Hiragino Kaku Gothic ProN W3.otf

Hiragino Kaku Gothic ProN W6.otf

Hiragino Kaku Gothic Std W8.otf

Hiragino Kaku Gothic StdN W8.otf

Hiragino Maru Gothic Pro W4.otf

Hiragino Maru Gothic ProN W4.otf

Hiragino Mincho Pro W3.otf

Hiragino Mincho Pro W6.otf

Hiragino Mincho ProN W3.otf

Hiragino Mincho ProN W6.otf

Hoefl er Text.dfont

Impact.ttf

Kai.dfont

Keyboard.dfont

LastResort.dfont

LiHei Pro.ttf

LucidaGrande.dfont

MarkerFelt.dfont

Microsoft Sans Serif.ttf

Monaco.dfont

Optima.dfont

Osaka.dfont

OsakaMono.dfont

Papyrus.dfont

Skia.dfont

STHeiti Light.ttf

STHeiti Regular.ttf

Symbol.dfont

Tahoma Bold.ttf

Tahoma.ttf

Thonburi.ttf

ThonburiBold.ttf

Times LT MM

Times New Roman Bold Italic.ttf

Times New Roman Bold.ttf

Times New Roman Italic.ttf

Times New Roman.ttf

Times.dfont

TimesLTMM

Trebuchet MS Bold Italic.ttf

Trebuchet MS Bold.ttf

Trebuchet MS Italic.ttf

Trebuchet MS.ttf

Verdana Bold Italic.ttf

Verdana Bold.ttf

Verdana Italic.ttf

Verdana.ttf

Webdings.ttf

Wingdings 2.ttf

Wingdings 3.ttf

Wingdings.ttf

ZapfDingbats.dfont

Zapfi no.dfont

Note the multiple font fi le formats:

.ttf TrueType

.otf OpenType

.dfont Data fork TrueType suitcase 

(an older type of TrueType font used on Mac OS’ prior to OS 10.x)

Mac OS 10.5 System Fonts



Dubberly Design Office / Understanding Digital Typography 76

Web-safe fonts are fonts likely to be present on a wide range of 
computer systems and are thus used by Web content producers to 
increase the likelihood that online content will be displayed as designed. 
When visitors to a website do not have the specifi ed font, their browser 
will attempt to select an alternative font from a “font-stack” which is a 
series of fallback fonts and generic font families specifi ed in advance by 
the content producer. This is referred to as a “degradation” process.

The CSS code structure of a font-stack is shown below. The 
browser will attempt to render the appropriate text in the fi rst listed 
font. In the event that the fi rst font is not available, the browser will 
try to use the second font and so on.

p { 

font-family: Garamond, Palatino, Times, serif; 

 }

Web-safe Fonts

How Are Fonts Managed?

The fonts listed here can reliably be 

found on the three major computer 

operating systems. Most of the fonts 

in the grouping to the right ship with 

the operating systems themselves. 

The weighted median is adjusted to 

account for the number of people who 

use each operating system.

When specifying a font stack in CSS, a 

fallback generic font family should be 

specifi ed as a last resort. The possible 

generic font families are “serif”, “sans-

serif”, “monospace”, “cursive”, and 

“fantasy”. The specifi c font used for each 

generic font family is stored in browser 

preferences. Most browsers allow the 

user to change the default generic font 

to any other font on their computer. 

Some popular fonts, such as Helvetica, 

are almost always present on the 

Mac OS but rarely found on Windows 

or Linux. These fonts are unreliable 

choices for Web typography.

Windows Mac Linux

Sources:

www.mightymeta.co.uk/web-safe-font-cheat-sheet-v-2-including-google-font-api/

www.codestyle.org/css/font-family/sampler-CombinedResultsFull.shtml

support.apple.com/kb/ht1642 (list of fonts shipping with Mac OS 10.5)

www.microsoft.com/typography/fonts/product.aspx?pid=161 (list of fonts shipping with Windows 7)

www.apaddedcell.com/sites/apaddedcell.com/fi les/fonts-article/Linux.html (list of fonts that ship with Ubuntu Linux)

. . .

Weighted Median

Courier 99.71 % 98.87 % 66.14 % 98.60 %

Verdana 99.76 % 97.46 % 62.66 % 98.50 %

Times 99.47 % 98.02 % 65.19 % 98.30 %

Arial 99.33 % 97.74 % 67.72 % 98.20 %

Trebuchet 99.38 % 94.63 % 62.03 % 98.00 %

Lucida 98.76 % 100.00 % 77.86 % 97.90 %

Georgia 99.04 % 95.76 % 62.66 % 97.80 %

Impact 99.00 % 91.24 % 61.08 % 97.50 %

Arial Black 98.52 % 94.07 % 62.66 % 97.20 %

Tahoma 99.90 % 79.10 % 0.00 % 97.00 %

Palatino 98.76 % 78.81 % 0.00 % 95.90 %

Arial Narrow 88.95 % 90.11 % 0.71 % 87.40 %

Century Gothic 88.04 % 40.40 % 0.00 % 83.90 %

Helvetica 7.38 % 100.00 % 18.62 %

Helvetica Neue 1.60 % 96.46 % -



Dubberly Design Office / Understanding Digital Typography 77

Fonts are not some sort of inherent property of operating systems; 
they are digital fi les that are stored in a folder (or folders) and must 
be accessed by the operating system in order to generate glyph 
bitmaps. Simply having a font fi le on your computer’s hard drive 
does not allow it to be accessed. The operating system must fi rst 
index the font fi le, which is the most basic role of font management 
software. The operating system’s font index is called the “font 
cache”. A font cache allows the operating system to provide 
applications a complete list of all installed fonts and previews quickly 
in response to user’s formatting choices. 

Most operating systems’ font management software (e.g. Font 
Book on the Mac OS) is very limited in capability. More advanced 
font management software allows users to sort and organize font 
fi les as well as turn fonts on or off, effectively adding and removing 
them from the operating system’s font cache as needed. This can 
be especially important when a user’s font library is very large – 
5,000 fonts is not an exceptional number of fonts for professional 
designers to have on their computers. A large font cache can slow 
down a personal computer to a crawl. 

Font Management Software

How Are Fonts Managed?

A contemporary font management program (FontExplorer) 

used to organize a large font library.



Dubberly Design Office / Understanding Digital Typography 78

Companies that license or sell (and typically also design) fonts 
are called font foundries. Font foundries have existed as long as 
typefaces have been sold (prior to typefaces being sold, individual 
printers would design and cut their own type for private use). In 
the late 19th century there were a vast number of foundries of all 
sizes. However extensive consolidation took place in response to 
improved mechanical typesetting technology. This pattern would be 
repeated in the mid-twentieth century with the number of foundries 
increasing signifi cantly only to see another wave of consolidation. 
Today, because of digital technology, there are thousands of micro-
foundries, sometimes being run by just a single person. 

For the most part, fonts are not sold, they are licensed. Fonts 
are typically licensed either individually (e.g. a user would license 
just Univers 55 Regular) or at a package discount for a group of fonts 
including some portion of a font family. Typically, a separate license 
must be acquired for every device that will use the font fi le; however 
some licenses allow for a single user to use the font on multiple 
machines provided they are the only one using it.

Most end user license agreements (EULAs) do not permit the 
user to re-sell, distribute, or modify the font fi le in any way. This 
distinction between selling and licensing fonts – along with what a 
licensee is permitted to do with the fonts – is extremely important 
in the realm of Web typography because most font EULAs explicitly 
prohibit font fi les from being posted to a Web server for remote 
access by webpages. Far fewer fonts have Web licenses available 
and these typically have to be purchased independently of a 
standard license.  

Font Foundries

How Are Fonts Managed?

Contemporary Font Foundries

Bitstream

Buro Destruct

Commercial Type

Dutch Type Library

Elsner & Flake

Feliciano

Font Bank (Korea)

Font Shop

Fontomas

Fountain

Han Yang (Korea)

Hoefl er & Frere Jones

House Industries

Klim

KLTF

Kontour

Letterror

Lineto

Linotype

Monotype

Morisawa (Japan)

Neufville Digital Foundry

Optimo

OurType

Porchez Typefonderie

Process Type Foundry

PSY/OPs

Sandol (Korea)

The Font Bureau

The Foundry

Thirstype

Typotheque

Underware

Village

Yoon (Korea)

. . .

Designer Fonts

Contemporary Type Designers and Fonts they have Designed

Ahn Sang-Soo I-Sang, Mano

Peter Bilak Fedra, Eureka, Greta

Erik van Blokland Federal, Trixie

Laurenz Brünner Akkurat, Circular

Matthew Carter Verdana, Georgia, Galliard, Bell Centennial, Charter

Gavillet & Rust Executive, Hermes

Tobias Frere-Jones Gotham, Nobel, Interstate, Whitney, Retina

Jonathan Hoefl er Champion Gothic, Hoefl er Text, Knockout, Verlag

Zuzana Licko Mrs. Eaves, Filosofi a, Matrix

Martin Majoor Scala, Seria

Norm Purple, Replica

Radim Pèsko Boymans, Fugue, Mitim, Mercury

Jean François Porchez Le Monde, Parisine, Costa

François Rappo Theinhardt, Didot Elder

Christian Schwartz Amplitude, Bau, Los Feliz, Neutra

Robert Slimbach Arno, Minion, Myriad

Fred Smeijers Arnhem, Fresco, Sansa

Kris Sowersby Founders Grotesque, National, Tiempos, Feijoa

Erik Spiekerman Meta, Unit, Offi cina

Underware Dolly, Fakir, Auto, Bello

Gerard Unger Swift, Argo, Gulliver, Vesta



Dubberly Design Office / Understanding Digital Typography 79

Font embedding inserts a font fi le (or a subset of a font fi le) into a 
document, such as a Word document or PDF, to allow readers to 
see the document as formatted by the author. Font embedding is 
controversial because it is possible to unpack the document and 
extract the font fi le. Although this is not a trivial operation for most 
computer users, anyone with a type design program (e.g. Font 
Forge) can extract a font fi le from a PDF with relative ease.

Font Embedding

How Are Fonts Managed?

Operating System

Operating System

Operating System

Font accessible to the 

operating system

Rendering the document as intended 

requires users to have a copy of the font 

on their computer. Without a copy of the 

font, the document will substitute the 

next specifi ed font or what it determines 

to be an appropriate replacement if no 

alternative font has been specifi ed.

Font shipped with the document, 

but not in the document

The font fi le is shipped with the document 

it is intended to help render. Many font 

licences specifi cally forbid this.

Font resident in the document

The font is be embedded into the 

document. This method should increase 

the chances that the document renders 

as intended by the author. Often the font 

fi le is subsetted: embedding only the 

necessary characters to render the text in 

the document. Subsetting is a strategy to 

both reduce fi le size and prevent piracy.

Document

Document

Document

Font

File

Font

File

Font

File



Dubberly Design Office / Understanding Digital Typography 80

Font substitution is the process of using one font in place of another 
when the intended font either is not available or does not contain 
glyphs for the required characters. Font substitution can occur on a 
glyph-by-glyph basis. Not all systems perform font substitution, and 
not all systems that perform font substitution are able to substitute 
for missing characters; some are only capable of substituting 
for missing fonts. Most major Web browser can perform font 
substitution with the exception of versions of Internet Explorer older 
than version 7.

Font Substitution

How Are Fonts Managed?

Font Specifi cation

font-family: Univers, Verdana, Arial, Sans-serif

Font Specifi cation

font-family: Galliard, Georgia, Times, Serif

Refi ned typeface 

chosen by the designer

Font substitution can be controlled somewhat by Web 

designers who can specify a preferred series of fonts, 

to use when displaying a page.

Font optimized for 

screen but less 

aesthetically refi ned

Widely available with 

operating systems

Application backup generic 

font, only used 

as last alternative

Thank You

Thank You

Thank You

Thank�You

Thank You

Thank You

Thank You

Thank You



Dubberly Design Office / Understanding Digital Typography 81

Font linking is a technique for associating two or more fonts, usually 
as a way to select what font is used for particular languages. For 
example, most Chinese fonts include Latin characters needed to 
display English and other western writing systems. However most of 
these characters are not very well drawn. Font linking helps guarantee 
that each unique writing system in a block of text displays and prints 
at the highest possible level of quality. 

Font Linking

How Are Fonts Managed?

Garamond

Latin-1 

extended

Kai

Unifi ed Han

Kana

Cyrillic

Greek

Symbol

Latin-1 

extended

Latin-1 

extended

An author can specify secondary 

fonts to replace portions of the 

primary font. 



82Dubberly Design Office / Understanding Digital Typography 82

How Is Text Formatted?



Dubberly Design Office / Understanding Digital Typography 83

Before computers, authors created manuscripts either by hand or 
typewriter. The graphic designer responsible for the look of the 
fi nal printed piece would specify the font, size, leading, tracking, 
alignment, and more by writing specifi cations, known as “markup”, 
directly on the manuscript. Skilled typesetters would follow those 
specifi cations to either set metal type or direct their formatting while 
operating a phototypesetter or digital typesetter. 

Specifying every detail of every style change in a book 
manuscript or other long document is repetitive and tedious, and 
typically designers have in mind just a few styles anyway. Thus a 
more effi cient short-hand naturally evolves – a table of styles and 
abbreviations or codes – style sheets. Codes can include names, 
letters, numbers, and even colors – using colored highlights makes 
markup very effi cient.

The invention of the style sheet allowed the structure and 
organization of the manuscript to be separated from specifi c 
style choices. That means styles could be altered throughout the 
manuscript simply by changing the style sheet. 

How Is Text Formatted?

Markup & Style How Is Text Formatted?
Markup & Style

Markup
Marking up text is a way to describe the syntax 
of that text and its parts through annotations. 
The term “markup language” comes from the 
practice of “marking up” a manuscript for 
printing. This process involved handwritten 
annotations to a paper manuscript or printed 
proof that would be used by the printer for 
typesetting. These annotations would specify 
changes, image placement relative to the text, 
and style information (typeface, size, color, etc). 

Style Sheets
Style information can be coded or written in a 
kind of short-hand that referred to a cover sheet 
with a list and description of each text style 
(body, caption, note, etc.). These “style sheets” 
were the precursor to modern CSS (Cascading 
Style Sheets) used in conjunction with HTML 
(HyperText Markup Language). Style sheets 
are especially useful if consistent or repeated 
styling needs to be applied to many pages.

Understanding Digital Typography

Markup & Style
Markup

Marking up text is a way to describe the syntax of 
that text and its parts through annotations. The 
term “markup language” comes from the practice of 
“marking up” a manuscript for printing. This process 
involved handwritten annotations to a paper manuscript 
or printed proof that would be used by the printer 
for typesetting. These annotations would specify 
changes, image placement relative to the text, and style 
information (typeface, size, color, etc). 

Style Sheets

Style information can be coded or written in a kind of 
short-hand that referred to a cover sheet with a list and 
description of each text style (body, caption, note, etc.). 
These “style sheets” were the precursor to modern 
CSS (Cascading Style Sheets) used in conjunction with 
HTML (HyperText Markup Language). Style sheets are 
especially useful if consistent or repeated styling needs 
to be applied to many pages.

Markup & Style
Markup

Marking up text is a way to describe the syntax of 
that text and its parts through annotations. The 
term “markup language” comes from the practice of 
“marking up” a manuscript for printing. This process 
involved handwritten annotations to a paper manuscript 
or printed proof that would be used by the printer 
for typesetting. These annotations would specify 
changes, image placement relative to the text, and style 
information (typeface, size, color, etc). 

Style Sheets

Style information can be coded or written in a kind of 
short-hand that referred to a cover sheet with a list and 
description of each text style (body, caption, note, etc.). 
These “style sheets” were the precursor to modern 
CSS (Cascading Style Sheets) used in conjunction with 
HTML (HyperText Markup Language). Style sheets are 
especially useful if consistent or repeated styling needs 
to be applied to many pages.

Section title: Univers, 10/12, bold, -5 tracking, 50% black, 24 pt indent

Styles

Section title: Univers, 10/12, bold, -5 tracking, 
50% black, 24 pt indent

Page title: Galliard, 36/36, bold, -10 tracking, 
100% black, 24 pt indent
Full line break above

Sub-title: Univers, 10/12, bold, -5 tracking, 
100% black, 24 pt indent

Body copy: Univers, 10/12, regular, 100% black

Italic: Univers, 10/12, italic, 100% black

Footer: Univers, 10/12, italic, 50% black, 
24 pt indent
Align to bottom of page

All: Flush left/ragged right

Top margin: .375 in
Bottom margin: .375 in
Left margin: 1.5 in
Right margin: .75 in

Page title: Arnhem, 
36/36, bold, -10 
tracking, 100% 
black, 24 pt indent
Full line break 
above

Sub-title: Univers, 10/12, 
bold, -5 tracking, 100% 
black, 24 pt indent

Body copy: 
Univers, 10/12, 
regular, 100% 
black

Left margin: 
1.5 in

Right margin: 
.75 in

Bottom margin: .375 inAll: Flush left/ragged right

Top margin: .375 in

Italic: Univers, 10/12, 
italic, 100% black

Footer: Univers, 
10/12, italic, 50% 
black, 24 pt indent
Align to bottom 
of page

Style Sheet

Marked-up Manuscript 

with Style Notation

Marked-up Manuscript

Styled Document

Styled Document

Understanding Digital Typography

Understanding Digital Typography

How Is Text Formatted?

How Is Text Formatted?

Here, detailed specifi cations are explicitly 

embedded in the manuscript.

Here the style is coded by color. (Letters or 

numbered could also be used.) Consolidating 

all the detailed specifi cations in this way 

makes global changes easy.

Here only a code indicating the style is 

embedded, the detailed specifi cation is in the 

style sheet.

How Is Text Formatted?
Markup & Style

Markup
Marking up text is a way to describe the syntax 
of that text and its parts through annotations. 
The term “markup language” comes from the 
practice of “marking up” a manuscript for 
printing. This process involved handwritten 
annotations to a paper manuscript or printed 
proof that would be used by the printer for 
typesetting. These annotations would specify 
changes, image placement relative to the text, 
and style information (typeface, size, color, etc). 

Style Sheets
Style information can be coded or written in a 
kind of short-hand that referred to a cover sheet 
with a list and description of each text style 
(body, caption, note, etc.). These “style sheets” 
were the precursor to modern CSS (Cascading 
Style Sheets) used in conjunction with HTML 
(HyperText Markup Language). Style sheets 
are especially useful if consistent or repeated 
styling needs to be applied to many pages.

Understanding Digital Typography



Dubberly Design Office / Understanding Digital Typography 84

Plain text is the content of an ordinary sequential text fi le without 
any style data beyond the choice of character (upper or lower case), 
and use of tabs and line breaks, both of which are control characters 
found in the font itself. Plain text has no size, color, or other typeface 
specifi cations – any of these attributes you may see applied to plain 
text are provided by the application to make the text legible.

Plain text is highly portable and, unlike application specifi c 
formats such as .indd and .doc, can be opened and read with a 
wide variety of applications. Plain text is the digital analog of the 
unformatted, hand- or typewritten manuscripts of the pre-computer 
era. Like those manuscripts, plain text can be marked up with a series 
of tags to change its appearance and layout. But unlike text in print, 
digital markup may not specify typographic settings in detail – or at 
all. The fi nal choice of font, size, style, etc. may be uniquely defi ned 
by the viewer application or even by the user. 

This raises an important issue – who should control how content, 
especially text, is displayed? In print, the graphic designer’s decisions 
are fi xed. Onscreen, designers have limited control over the display 
capabilities of the devices readers use to view the text. This ambiguity 
may be acceptable for certain types of content such as online periodi-
cals. Content that requires more careful and controlled formatting may 
be restricted to dedicated, platform-specifi c apps. The appropriate bal-
ance of designer control and user fl exibility remain a subject of debate 
for webpages and electronic books.

How Is Text Formatted?

Plain Text

A plain text fi le in Mac Text Edit. The font and 

size are not specifi ed by the fi le itself, rather 

those attributes are provided by the application. 

The column width is determined by the width of 

the application window; the text can refl ow to be 

any width desired because this information is not 

encoded into the text.



Dubberly Design Office / Understanding Digital Typography 85

How Is Text Formatted?

Evolution of the Typesetting “Stack”

Source

Composition Method

Gray indicates a step unchanged from previous stack.

Page Layout Method

Form Creation Method

Reproduction Method

Method Name

1456

Handwritten manuscript. 

(The compositor may also be 

the designer.)

A person selects individual 

pre-cast metal letters and 

arranges them by hand into 

lines of text.

Copies are printed directly 

from the hand set type.

Letterpress.

Lines of text are tightly bound 

into blocks.

1884

Typed manuscript marked up 

by a designer.

Typing letters on the keyboard 

of a typesetting machine causes 

a series of moulds to be as-

sembled and fi lled with molten 

lead, casting individual letters 

or complete lines of text.

Copies are printed directly 

from the machine set type.

In the late stages of “hot type”, 

only 2 or 3 proofs were printed. 

Pages were then laid out 

and prepared for printing as 

described in the next stack.

Letterpress.

Offset Lithography.

c.1954

Typed manuscript marked up 

by a designer.

Early photo typesetters 

replace moulds with neg- 

atives. Later devices arrange 

negatives on glass plates 

or fi lm strips. Light shown 

through the negatives exposes 

high contrast photo paper, 

creating typeset proofs. Early 

devices are driven by paper 

tape; later devices are driven 

by computer.

Copies are printed from the 

printing plate.

Offset Lithography.

Mechanicals are photographed 

in large process cameras to cre-

ate high contrast negatives. 

Negatives are taped or 

“stripped” into paper or plastic 

forms. The forms are sand-

wiched against a raw printing 

plate which is exposed with an 

arc lamp and then developed.

Mechanicals are photographed 

in large process cameras to cre-

ate high contrast negatives. 

Negatives are taped or 

“stripped” into paper or plastic 

forms. The forms are sand-

wiched against a raw printing 

plate which is exposed with an 

arc lamp and then developed.

A block or blocks are locked 

directly into the bed of a press 

or locked into a moveable 

frame which is locked into the 

bed of a press.

A block or blocks are locked 

directly into the bed of a press 

or locked into a moveable 

frame which is locked into the 

bed of a press.

No mechanicals are needed.

Negatives are taped or 

“stripped” into paper or plastic 

forms. The forms are sand-

wiched against a raw printing 

plate which is exposed with an 

arc lamp and then developed.

Using plate preparation soft-

ware, experts at the printing 

company arrange pages from 

the designer’s formatted docu-

ment so that they are in the 

right position for printing.

Some additional formatting 

may be required by experts 

who operate the press.

c.1980

Text delivered on disk accom-

panied by a printed manuscript 

marked up by a designer.

Once photo typesetters are 

driven by computers, the 

next step is replacing the fi lm 

negative with a digital image. 

Digital typesetters use CRTs 

or lasers to create images. In 

most cases they expose photo 

paper just as photo typesetters 

do. (Some digital typesetters 

employ xerography, but the 

quality is low.)

Copies are printed from the 

printing plate.

Offset Lithography.

c.1985

Electronic fi le delivered on 

disk, already formatted by 

a designer.

Copies are printed from the 

printing plate.

Offset Lithography.

c.1995

Electronic fi le delivered via 

email, already formatted by 

a designer.

Copies are printed from the 

printing plate.

Offset Lithography.

Compositor Machine Typesetter Photo Typesetter Digital Typesetter Digital Imagesetter Direct-to-Plate High Speed Inkjet

c.2000

Electronic templates delivered 

via email, already formatted 

by a designer.

Digital imagesetters are 

essentially digital typesetters 

without composition systems. 

Composition once done by 

people skilled at typesetting is 

now done by designers, who 

may know less of the craft. 

Image setters can expose 

paper or fi lm, creating the 

potential to skip paste up and 

go “direct to fi lm”.

Plate imaging devices are like 

imagesetters except that they 

expose plates instead of photo 

paper or fi lm. That means no 

negatives are required.

Composition takes on a very 

different form. The process 

assumes each “print” will be 

customized. Designers must 

decide which elements will 

appear on all copies and which 

elements will vary from copy to 

copy. Lists of recipients must 

also be prepared.

A computer controls a complex 

process that takes information 

from a list of recipients, matches 

it with rules, and inserts variable 

elements into templates to 

compose a page just in time 

for printing. The computer then 

rasterizes the page and sends the 

raster fi le to the printer.

Inkjet.

Lines of text are tightly bound 

into blocks.

Proofs are cut up, arranged, 

and pasted up on art boards 

called “mechanicals”.

Proofs are cut up, arranged, 

and pasted up on art boards 

called “mechanicals”.

Designers layout whole 

documents before sending 

them to the imagesetter.

Designers layout whole 

documents before sending 

them to the printing company.

Designers create templates, 

assemble variable elements, and 

defi ne rules for inserting them.



Dubberly Design Office / Understanding Digital Typography 86

TeX (pronounced /tek/) is a typesetting system designed by Donald 
Knuth beginning in 1977 to typeset his own manuscript after being 
displeased by the proofs he received from a publisher. Today TeX 
is used primarily for typesetting papers that involve mathematical 
formulas – it is popular in academia, especially mathematics, 
engineering, physics, computer science, economics, statistics, 
and quantitative psychology. Text markup in TeX uses commands 
(usually specifi ed by a backslash) that are applied to one or more 
pieces of text (indicated by curly brackets). The base TeX system 
understands about 300 commands, called primitives. However, 
these low-level commands are rarely used directly by users, and 
most functionality is provided by format fi les (pre-built collections 
of macro commands and formatting data). The most widely used 
format fi le is called LaTeX – it incorporates document styles for 
books, letters, slides, etc., and adds support for referencing and 
automatic numbering of sections and equations.

While TeX can be written in any text editor, it requires a special 
editing program to compile and output fi les based on the code. The 
TeX system was designed to work with Metafont, the font fi le format 
Knuth also designed, but TeX can also use PostScript fonts. 

How Is Text Formatted?

TeX

Simple Text Formatting in TeX

Code:

The dog is classified as \textit{Canis lupus familiaris} in taxonomy.

\bye

Output:

Th e dog is classifi ed as Canis lupus familiaris in taxonomy.

Mathematical Equation Formatting in TeX

Code:

The quadratic formula is $-b \pm \sqrt{b^2 - 4ac} \over 2a$

\bye

Output:

Th e quadratic formula is 

In the TeX system, mathematics mode is entered 

by using a $ character, after which the user can 

enter a formula in TeX semantics and then close 

with another $. 

All markup languages employ a code character 

to differentiate instructions from primary 

text. These characters are called “command” 

characters, “special” characters, or “delimiters”. 

Without them, text markup would not exist in its 

current form.

The code \textit is used in TeX to indicate that 

any text that follows (and surrounded by curly 

brackets) will be italic.  

−b±√b2 − 4ac

2a



Dubberly Design Office / Understanding Digital Typography 87

The Portable Document Format (PDF), created in 1993 by Adobe, 
is used for representing two-dimensional documents in a manner 
independent of application software, hardware, or operating system. 
PDFs are built on three technologies: a subset of the PostScript 
page description language for generating layout and 2D graphics, a 
font-embedding/replacement system to allow fonts to travel with the 
document, and a storage system to bundle elements into a single 
fi le (with data compression where appropriate). The version of 
PostScript used in PDF is simplifi ed to remove if and loop commands 
while graphics commands such as lineto remain. However PDF 
supports functions such as transparency, compression, and 
password protection that PostScript does not. 

How Is Text Formatted?

PDF

PDF Formatting

Code: 

(PostScript used in PDF is simpli\256 ed to remove )

[6.00792 6.17693 5.237 3.46892 6.78493 5.065 3.92892 2.73799 6.22693 3.27992 2.73 6.16693 

5.10899 5.65401 6.05992 2.73 2.71501 6.05992 2.73 6.14592 7.37685 5.51001 2.73 2.81099 

4.95 2.73 5.03502 2.724 9.41785 6.14893 2.7 2.81699 3.07147 3.07147 5.65399 6.05991 

2.73001 3.2919 6.05994 2.73001 3.94791 5.608 9.45386 6.02292 5.48801 5.51001 0 ]xsh

/HLTFWB+Univers-Oblique*1 

[101{/.notdef}rp /e /f 2{/.notdef}rp /i 2{/.notdef}rp /l /.notdef 

/n /o /p 3{/.notdef}rp /t 139{/.notdef}rp]

HLTFWB+Univers-Oblique nf

HLTFWB+Univers-Oblique*1 [10 0 0 -10 0 0 ]msf

329.395 290 mo

(if)

[2.72 0 ]xsh

HLTFWA+Univers*1 [10 0 0 -10 0 0 ]msf

335.395 290 mo

( and )

[2.72998 5.55099 6.13394 6.05994 0 ]xsh

HLTFWB+Univers-Oblique*1 [10 0 0 -10 0 0 ]msf

358.6 290 mo

(loop)

[2.75998 6.13193 6.13794 0 ]xsh

HLTFWA+Univers*1 [10 0 0 -10 0 0 ]msf

379.69 290 mo

( commands )

[2.73001 5.11597 6.12396 9.41483 9.43484 5.55103 6.13391 6.22394 4.99997 0 ]xsh

Output: 

PDF encoding of text. 

Each line of text in a column is 

described as a distinct section.

The numbers describe the 

width of each character.

Changes in text formatting, 

such as italicization, create a 

new text chunk.



Dubberly Design Office / Understanding Digital Typography 88

The backbone of the Web is HyperText Markup Language (HTML).
HTML was invented in 1990 by Tim Berners-Lee based on earlier 
research he had begun in 1980 while working at CERN. The work 
Berners-Lee developed in 1980 was done so that CERN scientists 
would have a way to display physics papers on screen. However 
Berners-Lee was neither a computer scientist nor a typographer, 
and perhaps because of this HTML has a number of strange features 
– content and presentation are confl ated, all markup has to be
repeated for all elements, etc.

As the name implies, HTML is a way to mark-up content and 
indicate to a computer what it is made of, e.g. paragraphs, headings, 
images, links (this is often referred to as “semantic HTML”). HTML 
is composed of elements that are defi ned by tags that typically take 
the form of an opening tag and a closing tag, inside of which there 
is content (there are some tags that are self-closing). Web browsers 
read HTML pages and compose them into visual and audible 
webpages. The browser does not display HTML tags, but uses them 
to interpret the content of the page. 

HTML 

How Is Text Formatted?

HTML Formatting

Code:

<html> 

<head>

<title>This is where the title goes!</title>

</head>

<body>

<h1>

This is the heading!

</h1>

<p>

This is a sample paragraph of text. <br />

That is a self-closing tag up there ... <br />

Only text in-between the body tags will be displayed in the browser window.

</p>

<ol>

<li>This is an ordered list, each item will have a number </li>

<li>You can also make <a href=”http://www.unorderedlists.com/”>unordered lists</a></li>

</ol>

</body>

</html>

Output:

The HTML only describes 

what the content is – it does 

not dictate how it should 

look. In this example, browser 

defaults were referenced to for 

defaults fonts, header sizes, 

list indents, etc.

The most remarkable thing about 

HTML is linking – embedding the 

address or path to another page. 

For linking to work, the other 

page must be resident on the 

user’s computer or the computer 

must be connected to a network. 



Dubberly Design Office / Understanding Digital Typography 89

HTML is used to categorize the contents of a webpage; Cascading 
Style Sheets (CSS) defi ne the look and formatting of the content. CSS 
was designed to enable the separation of document from document 
presentation. In HTML, an <h1> tag simply tells the browser “this text 
is a heading”, it says nothing about what that heading should look like. 
CSS can be used to defi ne the font, size, color, position, etc. of any 
type of tag. 

CSS has a simple syntax that allows the writer to assign style 
data to standard HTML tags (<h1>, <p>, etc.) or create their own 

“selectors” that can be applied to HTML tags. These selectors can 
have a wide variety of properties, each with a defi ned value. It 
should be pointed out that CSS can be used to style languages other 
than HTML such as XHTML, SVG, XUL, and more. 

As the name implies, CSS cascades. Style data is prioritized 
(or “weighted”) to determine what style rule applies to an element 
if more than one rule matches against a particular element – more 
specifi c rules are given more weight, so if two selectors apply to the 
same element, the one with higher specifi city wins. This also allows 
multiple style sheets to be used for the same HTML document. 
Allowing for multiple style sheets is especially important because it 
provides a way for users to override an HTML documents given style 
with their own, customized style sheet. 

CSS 

How Is Text Formatted?

CSS Formatting

Code:

The CSS code structure.

selector { 

property: value;

}

Sample CSS code for the <h1> HTML element.

h1 {

margin: 15px 30px 15px 30px;

font-family: Georgia, Times, serif;

font-size: 30px;

font-style: italic;

font-weight: normal;

letter-spacing: 1px;

color: #090;

}

Sample CSS code for a writer defi ned selector.

.newStyle {

margin: 15px 30px 18px 30px;

padding: 16px 0 0 0;

border-top: 1px solid #000;

font-family: Georgia, Times, serif;

font-size: 16px;

line-height: 24px;

}

This style can be applied to HTML elements by adding a modifi er to the tag.

<p class=”newStyle”>

Output:

No styling 

(style data defaults supplied 

by the application)

Styling applied

Author 

Defi ned 

CSS

Styled 

Webpage

1

HTML

User 

Defi ned 

CSS

Styled 

Webpage

2

The screenshots use the same HTML code from page 87.



Dubberly Design Office / Understanding Digital Typography 90

JavaScript is a scripting language (a lightweight programming 
language) designed to add greater interactivity to HTML pages. 
JavaScript cannot be used on its own but must work in tandem with 
HTML. Its primary advantage is that is works on the client side (i.e. 
in the browser, rather than on the server), and this allows for the 
authoring of dynamic behaviors that can be triggered by user actions 
(e.g. changing the background color of a document depending on 
where the mouse is located on screen or validating user input text 
before it is sent to the server). 

How Is Text Formatted?

JavaScript

HTML Only

In order to validate text entered into a 

form, the browser has to send the data to 

a server, which checks the data and then 

returns a response. Further text entry 

requires the procedure to be repeated. 

Validation requests are sent when the user 

presses “enter”. This process can be slow 

and frustrating.

HTML with JavaScript

With JavaScript, text can be validated 

continuously in the browser on a 

character-by-character basis without 

any server queries. Using JavaScript 

in this way reduces lag and makes the 

page or application more responsive.

Browser Server

HTML
Java or Other

Application

input text 
into a form

send data to 
server, request 
check if valid

return validation 
response

receive message 
declaring whether 
data is valid

Browser

HTML

with 

JavaScript

input text 
into a form

receive message 
declaring whether 
data is valid

User

User



Dubberly Design Office / Understanding Digital Typography 91

Dynamic behavior on a webpage means that something on 
a given webpage changes. Modern webpages use scripts 
written in JavaScript (see previous page) to alter the HTML 
or CSS. However, for the script to work, it must have a way 
of addressing the HTML or CSS – it must know what the 
elements of a page are called and where to fi nd them. The 
Document Object Model (DOM) is a standardized format 
that allows programs and scripts to dynamically access 
and update the content, structure, and style of documents.

The DOM views documents as a tree-structure, and 
all HTML documents received by a Web browser are 
parsed into a DOM tree before they can be rendered on 
screen. The tree is composed of element nodes that begin 
with the document type (<html>), go through the parts 
of the document (<h1>, <p>) and end in the content itself 
(the words between <p> tags). The DOM defi nes objects 
and properties for all elements in the document and 
methods to access them. 

DOM

How Is Text Formatted?

This example DOM tree uses the 

HTML code from the page 87.
DOM Tree 

and its Corresponding Webpage

Modifi ed DOM Tree  

and its Corresponding Webpage

The DOM allows for dynamic behavior in the browser. 

For example, a JavaScript function could be written to 

dynamically re-order elements in a list. In this example, 

the following pseudo-code could be activated:

$(list).sortBy(“reverse”);

to allow a user to reverse the order of the list elements.

This is where 
the title goes!

<head>

<title>

This is the 
heading!

<h1> <ol>

This is an 
ordered list, 
each item will 
have a number

<li>

You can also 
make unordered 
lists

<li>

http://www.
unorderedlists.
com/

<href>

<html>

This is a sample 
paragraph of 
text.

That is a self-
closing tag up 
there ...

Only text 
in-between the 
“body” tags will 
be displayed 
in the browser 
window.

<p>

<body>

You can also 
make unordered 
lists

<li>

http://www.
unorderedlists.
com/

<href>
This is where 
the title goes!

<head>

<title>

This is the 
heading!

<h1> <ol>

This is an 
ordered list, 
each item will 
have a number

<li>

<html>

This is a sample 
paragraph of 
text.

That is a self-
closing tag up 
there ...

Only text 
in-between the 
“body” tags will 
be displayed 
in the browser 
window.

<p>

<body>



Dubberly Design Office / Understanding Digital Typography 92

The render tree is built from the DOM tree. The layout engine creates 
a parallel tree to the DOM by attaching style data to DOM elements to 
create render objects. The render tree is used to instruct the rendering 
engine how to paint the contents of the DOM tree. The render tree also 
instructs the rendering engine on what order to render elements.

Not all elements of the DOM tree are part of the render tree. Invis-
ible elements, such as the <head> element are not painted on screen, 
and therefore do not need to be part of the render tree. The render tree 
also does not contain element attributes, such as link destinations.

Render Tree

How Is Text Formatted?

This is where 
the title goes!

<head>

<title>

This is the heading!

<h1>

<ol>

This is an ordered list, 
each item will 
have a number

<li>

You can also 
make unordered 

lists

<li>

http://www.
unorderedlists.
com/

<href>

<html>

This is a sample 
paragraph of 
text.

That is a self-
closing tag up 
there ...
Only text in-between the 
“body” tags will 

be displayed 
in the browser 
window.

<p>

<body>

Style  data

Style  data

Style  data

Style  data

Style  data

Style  data

Style data

Style data

Style data

Style data

Style data

Style data

d

S

S

d

d

S

S

S

d

d

d

S

Style data
<hdd1ddaa>aatt

Style
SStyle

Style data
<oddlaa>aatt

Style
SStyle

Style data
<lddidd>aatt

St l
SStyle

Style data
<lddidd>aatt

St l
SStyle

root

Style data
<pddp>aatt

Style
SStyle

Style data
<bodddddaayaatty>aa

Style
SStyle

Style data
Liiiinnnne eee 1111 data

Style dd
Style data

Style data
Liiiinnnneeee 1111

Style data
d

Style data

Style data
Liiiinnnneeee 1111

Style data
d

Style data

Style data
Liiiinnnne eee 1111

Style data
d

Style data

Style data
Liiiinnnne eee 2222 data

Style dd
Style data

Style data
Liiiinnnne eee 3333

Style data
d

Style data

DOM Tree

Style Data
+

Render Tree



Dubberly Design Office / Understanding Digital Typography 93

A content management system (CMS) is a method of managing 
content, workfl ow, and collaboration. Content management systems 
range from blogging software to corporate intranets. The core 
notion of a CMS is that it simplifi es the production and publication 
of content by centralizing resources. For instance, when a website 
has three pages of HTML with some linked images, it is relatively 
easy to update the page layout or content chunks one-by-one. On 
the other hand, if a website has three hundred pages, updating the 
layout or a repeated piece of content for each page one-by-one 
would be a prohibitively time consuming task. Content management 
systems allow an author to automate this process – page layout 
templates provide a tool for making global layout changes and 
content templates provide a tool for standardizing content structure. 
A secondary benefi t of content management systems is that they 
allow authors less versed in markup and programming languages to 
manage and publish content without having to learn a large amount 
of technical knowledge.

How Is Text Formatted?

CMS

CMS

Style Templates

CSS 1 CSS 2

Content Database

Content 

Chunk 

1

Content 

Chunk 

2

Content 

Chunk 

3

Content 

Chunk 

4

Page Templates

HTML 

1

HTML 

2

HTML 

3

HTML 

4

HTML with Linked Images 

and Style Resources

Content Management 

System

CSS

HTML
Composed

Page

Composed

Page

Image 

1

Image 

2

referen
ces

referen
ces

calls

tem
p

lates 
co

m
b

in
e

output output

calls



Dubberly Design Office / Understanding Digital Typography 94

A markup language is way of writing and annotating information.
Extensible Markup Language (XML) is a meta-language consisting of a 
few simple rules you can combine to defi ne your own markup languages. 

Tags are the atomic unit of XML and each has a name, attributes that 
describe the tag, and content. The content of a tag can be either data or 
more tags – nested tags allow for the formation of hierarchal structures. 

XML-based languages (or, “schemas”) specify what tag names 
are allowed, which attributes are allowed on each tag, and how the 
document can be structured. XML schemas must be defi ned for an 
application to parse them correctly, and this is the role of the “schema 
document”. An XML schema document can come in several forms, most 
notably DTD (Document Type Defi nition) and W3C XML Schema – both 
serve the same purpose but W3C XML Schema is considered more 
powerful because it can be more specifi c than DTD, is namespace aware, 
and is itself written in XML.

XML was originally derived from HTML, and though the current 
HTML specifi cation (HTML5) is heavily infl uenced by XML, it is not 
technically XML-based. There are many XML-based markup languages 
used commonly today. Some examples are:

– RSS (Really Simple Syndication), a format for marking up feeds of
syndicated content. Where HTML may be used to mark up an article
on a website, RSS would be used to mark up a preview of every article
published by the site.

– SOAP (Simple Object Access Protocol), a protocol format for exchanging
information between a Web server and a Web application.

– DITA (Darwin Information Typing Architecture), a modular format based
on discrete modular “topics”, primarily used for reference documents.

Most offi ce productivity tools (e.g. Microsoft Word and Excel, Apple’s 
iWork, and Open Offi ce) have adopted XML-derived fi le formats. An 
advantage of defi ning formats within the XML standard is that it allows 
for greater inter-application portability.

How Is Text Formatted?

XML

<tag attribute=”value”>Content</tag>

<?xml version=”1.0” encoding=”UTF-8” ?>

<rss version=”2.0”>

<channel>

<title>RSS Post Title</title>

<description>This is an example of an RSS feed</description>

<link>http://www.someexamplerssdomain.com/main.html</link>

<lastBuildDate>Mon, 06 Sep 2010 00:01:00 +0000 </lastBuildDate>

<pubDate>Mon, 06 Sep 2009 16:45:00 +0000 </pubDate>

<item>

<title>Example entry</title>

<description>Here is an interesting description.</description>

<link>http://www.wikipedia.org/</link>

<guid>unique string per item</guid>

<pubDate>Mon, 06 Sep 2009 16:45:00 +0000 </pubDate>

</item>

</channel>

</rss>

Basic XML Rules

XML Implementation: RSS

Content is nested 

between the opening 

and closing tags.

The opening tag can have 

attributes – it is possible to 

have more than one attribute.



Dubberly Design Office / Understanding Digital Typography 95

Dublin Core is a metadata specifi cation for providing cataloguing 
information for physical objects such as books, digital materials such 
as texts, videos, sounds, or images, and composite media such as 
webpages. The specifi cation has two levels: simple and qualifi ed. Dublin 
Core is the standard metadata specifi cation in the fi elds of library science 
and computer science. 

How Is Text Formatted?

Dublin Core

Simple Dublin Core

There are 15 metadata elements in the simple set.

 1 Title
 2 Creator
 3 Subject
 4 Description
 5 Publisher
 6 Contributor
 7 Date
 8 Type
 9 Format
 10 Identifi er
 11 Source
 12 Language
 13 Relation
 14 Coverage
 15 Rights

Proper name of the resource

Author, artist, photographer, or illustrator

Keywords or phrases

A textual description or abstract

Publishing house, a university department, or a corporate entity

For example: editor, transcriber, and illustrator

A date associated with the creation or availability

The category of the resources, such as home page, novel, poem, etc.

The data format and dimensions (e.g. size, duration) of the resource

A number used to uniquely identify the resource, such as URL and ISBN

Information about a second resource from which the present resource is derived

The language of the intellectual content of the resource

An identifi er of a second resource and its relationship to the present resource

Spatial coverage refers to a physical region which the resource is about

A rights management statement

Qualifi ed Dublin Core

There are 3 additional metadata elements in the qualifi ed set.

 1 Audience
 2 Provenance
 3 RightsHolder



96

–

–

–

–

–

–

–

–

–

–

–

–

–

How Are Pages Rendered?
Like this:

Open Document

Determine language

Find plane

Determine font

Find font

Determine size

Render font at size

Cache glyphs

Match text to appropriate glyphs

(some languages require “shaping”)

Find line lengths and leading

Place fi rst glyph

Check kerning table for special spacing instructions

Place next glyph

IF: current position > line length THEN: move to next line

ELSE: 

With H&J settings, 

this process becomes much more complicated

Dubberly Design Office / Understanding Digital Typography



Dubberly Design Office / Understanding Digital Typography 97

What happens when you type in a text editor?
This example is based on Mac OS.

Hello, World! 

How Are Pages Rendered?

Application

Font File Library

Glyph

Cache

Font Cache

Font File

Rendering 

Engine

Input

Device

TextView
Application

View

Layout

Manager

Glyph

Generator

Typesetter

Text

Storage

Font

ID

Lang.

Data

Char.

String

Display 

Device

send 
key 

strokes

g
en

er
at

e

print
view

deliver
view

send char. 
string & 

CSS data

deliver aliased or anti-aliased or subpixel 
rendered glyph bitmaps

cache bitmaps

sen
d

sen
d

Layout Engine

Font 

outline

Char.

Map

send new 
char. string

assemble glyphs 
into lines

model text area,
build display

send new data,
specify what kind 
of change:
– characters
– attributes

if data already 
exists: A

if not: B

Code

Pages

*

validate1

3

2

deliver

deliver 
glyph #s

call

send 
correct 
code

If the local font fi le 
library does not contain 
the font designated (in 
the CSS), it will move 
down the list until a 
matching font is found.

Font 

Library

Index

*  Unicode fonts do not
have codepages, they
bypass this step

A

B

User



Dubberly Design Office / Understanding Digital Typography 98

Fonts are digital fi les that must be accessed by the operating 
system in order to generate glyph bitmaps. Simply having a font 
fi le on your computer’s hard drive does not allow it to be accessed. 
The operating system must fi rst index the font fi le into the font 
cache. Caching is the process of saving something that is likely to 
be reused – thus saving time.*

The font cache is a list of fonts accessible to the system. This 
terminology is potentially confusing because the font cache is not
all the fonts stored on the device; it is the list of fonts known to 
the operating system. Most operating systems have one or more 
designated font folders. Any font fi le placed in those folders will be 
indexed into the font cache while font fi les that are not will remain 
invisible to the operating system. 

* This time saved is achieved at an expense: the cached data
takes up memory that then can’t be used to store other data.
Caching is also “expensive” (in terms of demands on the OS)
because work must be done to ensure that the cached data is
current, that the computation that generated the need for the
data is current, and the arguments requiring the computation are
current. Additionally, this process makes the computation more
complex, which can lead to diffi culties when these processes need
altering or when the computation fails part of the way through.

Font Cache

How Are Pages Rendered?

Operating
System

Font Cache

Font 

Library 

Index

Font 

Folder

Font 

File

Font 

File

Font 

File

Font 

File

reside in

g
en

erates

examines



0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

1

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

2

SP

!

“

&

‘

(

)

,

-

.

3

0

2

3

7

9

:

?

4

A

B

C

D

E

F

H

I

J

L

M

O

5

P

Q

R

S

T

6

a

b

c

e

f

g

h

i

j

n

o

7

q

r

s

t

u

v

y

DEL

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

1

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

2

SP

!

“

#

$

%

&

‘

(

)

*

+

,

-

.

/

3

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

6

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

7

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

Dubberly Design Office / Understanding Digital Typography 99

When an application asks the operating system to render 
glyph bitmaps, the operating system fi rst checks the glyph 
cache to see if those bitmaps already exist; if they do, the 
OS delivers them to the application. If they do not, the OS 
renders them fi rst and then delivers them to the application. 
Glyph caching is a strategy for conserving resources and 
avoiding repeating tasks when possible. 

It is important to note that font caching and glyph caching 
are distinct operations.

Glyph Cache

How Are Pages Rendered?

Layout 

Engine

Font Cache

Application
request 
glyph 

bitmaps

deliver 
laid out 

page

check for pre-existing glyph bitmaps

If glyph bitmaps exist: A

If glyph bitmaps do not exist: B

Glyph bitmaps 
are organized and 
stored in a table very 
similar to the font 
outline table. The 
glyph cache may not 
contain data for all 
glyphs in the font.

Font outlines are 
organized and 
stored in a table in 
the font fi le. 

deliver glyph bitmaps

request 
font fi le

ch
eck if 

fo
n

t fi le exists

cache rendered bitmaps

send
font fi le

d
el

iv
er

 a
lia

se
d

 
o

r 
an

ti
-a

lia
se

d
 

o
r 

su
b

p
ix

el
 

re
n

d
er

ed
 g

ly
p

h
 

b
it

m
ap

s

Rendering

Engine

Font File 

Library

Glyph Cache
A

B



Dubberly Design Office / Understanding Digital Typography 100

To compose a line, the layout engine must request glyph bitmaps from 
the rendering engine. When laying out lines of text that use contextual 
shaping, the layout engine must fi rst determine what version of the 
character to ask for (i.e. what glyph). Before sending the request to the 
rendering engine, it fi rst checks what position in the word the character 
occupies and what characters surround it. In most Latin scripts this 
process is mainly used to determine when to use a ligature. In other 
scripts, such as Arabic or Indic, this process is extremely important; 
without it, the language could not be displayed properly. Contextually 
orientated glyph usage isn’t an aesthetic choice, as in English, but a 
grammatical requirement. (See page 62 of Understanding Typography.) 

Contextual shaping can be a very demanding activity for the 
layout engine, requiring multiple times the amount of system resources 
that simple text layout does. Some application layout engines, such as 
the one in WebKit, have to outsource line layout to the OS when there 
is contextual shaping because it is too demanding. Because of this, 
contextual shaping is turned off for most Latin-based scripts by default.

Contextual Shaping 

Sources:

msdn.microsoft.com/en-us/goglobal/bb688172

people.w3.org/rishida/scripts/featurelist/index.php?col=6

How Are Pages Rendered?
2: Lam

Initial

3: Ayn

Medial

4: Ra

Final

5: Ba

Initial

(space)

(space)

6: Ya

Medial

7: Ta Marbutah

Final

1: Alif

Initial

Isolated Letters

Reading direction

Contextual Versions

Assembled Word

Latin transcription: Al-’Arabiyya

Translation: “The Arabic”



Dubberly Design Office / Understanding Digital Typography 101

After glyph bitmaps have been generated from the outline font fi le, 
they need to be composed into a page. The fi rst step in this process 
is line assembly. The layout engine receives data about the start 
location and the length of the text line – it then begins placing glyphs 
side by side until it reaches the end of the line. When the end of the 
line is reached, the layout engine will attempt to place any remaining 
glyphs on the next line. Doing this sometimes requires that a hyphen 
be added or a glyph be substituted (e.g. if a ligature falls at the end 
of a line and needs to be broken for hyphenation). 

Line & Paragraph 

Assembly 

How Are Pages Rendered?

Individual glyph bitmaps are arranged sequentially based on the character string.

The data sent to the layout engine includes the bitmap image of the glyph along with the size of its “side bearing”

(the amount of space to the left and right of each glyph).

The fi nal line is assembled.

For most glyphs in the string, once they are placed in 

order the operation is complete. However for some, 

there is additional kerning data to take into account. 

Kerning data, or a kerning pair, is preprogrammed 

data in the font for special cases where inter-letter 

spacing has been adjusted due to an awkward meeting 

of shapes. Most often this data is used to make two 

glyphs fi t closer together to avoid the appearance of a 

gap in the word.

A kerning pair, 

negative letter spacing



Dubberly Design Office / Understanding Digital Typography 102

When pages are rendered, the layout engine must make a lot of 
decisions about how to space and break words. A good hyphenation 
& justifi cation (H&J) program must track:

– Number of hyphens in row: Should not exceed two in a row.
– Space between words: Should be between 1/8 and 1/2 of an em quad.
– Space between letters: Should be between 75% and 125% of the

default sidebearings as set in the font fi le by the designer.

In addition, H&J programs must include a hyphenation dictionary.

H&J

How Are Pages Rendered? Hyphenation & Justifi cation Algorithm

Place next glyph bitmap

Am I at the end of a word?

YES Have I exceeded the line length?

YES Is hyphenation turned on?

YES Are there allowable breaks in the last word?

YES Have I reached my hyphen limit?

YES Can I re-hyphenate for better balance?

YES Adjust paragraph hyphenation.

Determine break closest to line ending.

Break word, add hyphen.

Adjust word spacing.

Move to next line.

NO Do spacing rules allow word to fi t on line?

YES Break line after last word, push in.

Adjust word spacing.

Move to next line.

NO Break line before last word.

Adjust word spacing.

Move to next line.

NO Determine break closest to line ending.

Break word, add hyphen.

Adjust word spacing.

Move to next line.

NO Do spacing rules allow word to fi t on line?

YES Break line after last word, push in.

Adjust word spacing.

Move to next line.

NO Break line before last word.

Adjust word spacing.

Move to next line.

NO Do spacing rules allow word to fi t on line?

YES Break line after last word, push in.

Adjust word spacing.

Move to next line.

NO Break line before last word.

Adjust word spacing.

Move to next line.

NO 

NO 

Is this the end of the paragraph?

YES  Do I have a widow?

YES  Can I re-hyphenate for better balance?

YES  Adjust hyphenation in this paragraph.

Add hyphen to this line.

Adjust word spacing.

Move to next line.

NO Move to next line.

NO Move to next line.

NO Move to next line.

Is this the end of the page?

YES  Do I have an orphan?

YES  Push orphan line to next page.

Move to next page. 

Move to next line.

 NO  Move to next page.

Move to next line.

NO Move to next line.

Is this the beginning of the page?

YES  Do I have an orphan?

YES  Pull extra line from previous page to this page.

Move to next line.

NO  Move to next line.

NO  Move to next line.

Optional 

second 

path – 

most H&J 

algorithms 

do not 

have this 

capability.



Dubberly Design Office / Understanding Digital Typography 103

Once lines and paragraphs of text have been composed, they must be arranged on 
the page. This level of composition is essentially the placing of rectangles next to 
or inside other rectangles. In the following hierarchy:

– Application
– Window
– View
– Container
– Object

The arrangement of various page components is handled by the layout engine. 
In many programs this task is delegated to the layout engine of the operating 
system; however a number of applications such as Web browsers use their own 
embedded layout engines.

Page Assembly 

How Are Pages Rendered?

Glyph position is determined by the location of the glyph origin 

point. The origin point is used to place the glyph via coordinates in 

Line Fragment Rectangle.

The Line Fragment Rectangle’s origin point is defi ned in 

coordinates relative to the Container’s point of origin.

The Container’s origin point is defi ned in coordinates 

relative to the View’s point of origin.

The View origin point is typically the zero point of the application 

window’s non-navigational space, e.g. the upper left corner of a Web 

browser window, below all application navigation.

Application 
Window

Application 
View

Text 
Containers

Line Fragment 
Rectangles

GlyphCharacter

Line Fragment Rectangle

Glyph Bounding Box

Container

View

Glyph

Q Q



Dubberly Design Office / Understanding Digital Typography 104

A “buffer” contains data that is stored for a short amount of time. 
The portion of computer memory reserved for holding the complete 
bit-mapped page image that is sent to the monitor is called the 

“frame buffer”. The frame buffer can be stored in either the general 
main memory (RAM) or specialized video memory (VRAM) on the 
video adapter. 

The term “frame buffer” can be a confusing one – it is 
sometimes used to refer to a physical piece of computer hardware 
that stores display data in which case the term “screen buffer” is 
used to refer to the actual data.

Frame Buffer

How Are Pages Rendered?

The layout engine gener-

ates instructions for sizes, 

positions, colors, etc.

The rendering engine 

“paints” into the frame 

buffer.

The reason that a frame buffer 

is used here is so that the 

user does not see the page 

being pieced together by 

the rendering engine. This 

process happens very quickly – 

typically in a fraction of a 

second – but the frame buffer 

allows changes in the display 

to appear seamless.

The frame buffer is 

displayed on screen.



105Dubberly Design Office / Understanding Digital Typography

What Is a Digital Book?



Dubberly Design Office / Understanding Digital Typography 106

Content in digital books can be accessed in two ways: random 
access and serial access. Random access is when a group of 
elements can be accessed in an arbitrary sequence with no 
predetermined order in equal time (e.g. a card catalog). Sequential 
access is when a group of elements is accessed in a predetermined, 
ordered sequence (e.g. a scroll)

Users want to know:
– Where am I?
– Where have I been?
– Where can I go?

Access

What Is a Digital Book?

It is not necessary to represent random 

access content as a sequence of elements 

in a row. Random access content can also 

be represented as a database with content 

in no particular order – multiple ordering 

schemes are possible, and any ordering 

scheme chosen by the author is arbitrary.

History

Paths or Trails

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Random Access (also sometimes called “direct access”)

In a data structure, random access implies the ability to access any 

element in the same amount of time – e.g. moving from 1 to 5 takes the 

same amount of time as moving from 1 to 2.

Serial Access

In a data structure, content is said to be sequential if a user can 

only visit the elements in one particular order – e.g. moving from 

1 to 2 takes half the time it takes to move from 1 to 3.



Dubberly Design Office / Understanding Digital Typography 107

Digital texts differ from analog texts in the ease with which content 
can be connected for navigation and referral – hypertext provides a 
way for users to move through or to a new text quickly. Hypertext 
is built on the idea of “links”, and originally there were many kinds. 
However today links are only used in two primary ways: to navigate 
within a document through “anchors” and to navigate to a new docu-
ment through a “referral” – both of these kinds of links are one-way. 

The term hypertext was coined by Ted Nelson in 1965, though 
the idea was fi rst proposed in 1945 by Vannevar Bush (see next page). 
Nelson developed a model for creating and using linked documents 
and later developed the Hypertext Editing System (in 1967). Douglas 
Englebart also developed a similar system, called NLS (oN-Line 
System), in 1962. 

In the contemporary HTML specifi cation, hyperlinks are uni-di-
rectional and one-to-one; however there is no reason that a hyperlink 
couldn’t be one-to-many (i.e. clicking a single link opens multiple web-
pages). The ENQUIRE system, on which HTML was based, featured 
bi-directional links; however it became apparent that the system was 
not scalable because bi-directional links require there be a system 
administrator who ensures that all links point in both directions 
(i.e. anytime a page is created with a link to a separate page, if the link 
is to be bi-directional, the linked to page has to be updated as well). 

Most links today are premised on the idea of the user going 
somewhere – the user clicks a link and the browser loads the page that 
the link pointed at. There are also links that bring the linked content 
to the user – frames were often used to accomplish this, allowing one 
page to load inside of another page.  

Hypertext 

What Is a Digital Book?

Anchors 

allow for 

intra-text 

navigation   

You go there

It comes here

Document #1

V
ie

w
in

g
 A

re
a

Document #2 Original HTML Link Relationship Values

Links 

allow for 

inter-text 

navigation

1

1

2

2

Use Index

Includes

Use Glossary

Reply

Embed

Subdocument

Present

Search

History

Made

Interested

Supersedes

Precedes

Annotation

Document A uses document B as an index. 

A includes B, B is part of A.

Document A uses document B as a glossary.

Similar to Annotation, but B is not subsidiary to A. 

If link is followed, B is embedded into A.

B is a lower part in a hierarchical relationship to A.

Whenever A is presented, B must also be presented.

When link is followed, B should be searched rather than 

presented.

B is a list of versions of A.

Person (etc.) described by A is author of B.

Person (etc.) described by A is interested in B.

B is a previous version of A.

In an ordered structure, A precedes B, B follows by A. 

Any document can only have one link of this type.

Information in document B is additional and subsidiary 

to A, used by author of B to write the equivalent of a 

margin note on A.

Relationships Between Documents

Relationships About Subjects to Documents



Dubberly Design Office / Understanding Digital Typography 108

In 1945 Vannevar Bush published an article titled As We May Think 
that predicted many kinds of technology including hypertext, personal 
computers, the Internet and World Wide Web, speech recognition 
software, and online encyclopedias such as Wikipedia. One of 
the propositions of the article was a device called a “memex” (a 
portmanteau of “memory” and “index”), a theoretical proto-hypertext 
computer system in which an individual could compress and store 
all of their books, records, and communications. In the memex, 
documents can be edited, annotated, and linked together – the device 
was intended to be a supplement to an individual’s memory. 

The memex is conceptually related to the “commonplace book”. 
Commonplace books were notebooks into which people entered, by 
hand, information they collected around a theme. A commonplace 
book was an essential personal tool for anyone doing research into a 
topic during times when books, much less libraries, were rare.

Memex

What Is a Digital Book?

Conceptual illustrations of a memex. The device was conceived as a desk-

like apparatus, with a platen scanner for input of documents and screens 

for viewing and editing more than one document at a time.



Dubberly Design Office / Understanding Digital Typography 109

Almost all e-book formats are, at their core, HTML. HTML documents 
have a size limit beyond which they become very slow and may 
potentially crash the reader application. That’s why e-books typically 
break a book into chapter documents and package them into a 
hierarchical fi le structure along with any images and resources (such 
as fonts) the e-book may need. 

E-book Formats

What Is a Digital Book?

Generic E-book Format

E-books come in many formats, but the majority of them use

a format similar to what is shown below. Each chapter is an

independent folder with all the fi les that comprise that chapter.

Chapter folders, style data, and a table of contents (TOC) fi le are

packaged together. This package is wrapped in a container that

handles compression, encoding, and permissions.

The .opf fi le contains the documents 

metadata, fi le manifest, and linear 

reading order. Without this fi le the 

eReader application will not know 

how and in what order to access and 

sequence the contents of the fi le.

The .ncx fi le contains the document’s 

hierarchical table of contents. It is 

intended to provide a tool for users to 

navigate through the document’s larger 

divisions or through progressively 

smaller elements. It can expose more 

detail than a normal TOC (e.g. chapters, 

sub-sections, images, etc.) 

E-book Container

Publication Structure

StyleChapter 3Chapter 1 Chapter 2

Font

File

CSS
Ch3.

html

Ch1.

html

TOC.

html

MIME

type

.opf

.ncx

Ch2.

html

img

31.gif

img

11.gif

img

21.gif

img

32.gif

img

22.gif

img

23.gif



110Dubberly Design Office / Understanding Digital Typography

How Are Digital Books Managed?



Dubberly Design Office / Understanding Digital Typography 111

At the most basic level, fi les are managed in most OS interfaces 
through the use of directories. In contemporary operating 
systems, the primary metaphor is that of a fi le folder. This system 
is relatively simple and easy to comprehend but can be limiting. 
Files can be in only one directory at a time. Although aliases to 
a fi le can be placed anywhere, this is a clumsy way to handle 
increasingly hybrid data.

No taxonomy can ever be 100% defi nitive, and it is always 
possible to organize material in multiple ways: a pile of coins can 
be organized by their monetary value, or by their circumference, 
or by their thickness, or by their color, or the images they bear, or 
by the number of letters they have, etc. The fact that there is no 
one “right” way to organize any set of items becomes even more 
problematic in the context of digital information. 

The directory model of content organization has a 
conceptual limit, i.e. there is a limit to the number of items in 
a tree that a user can remember. Because of this, search tools 
become extremely important. 

Directories

How Are Digital Books Managed?

The Mac OS Finder allows users to view their fi le directory structure in several 

ways, but always through the metaphor of a fi le folder.

Directories are tree structures. There is a root directory, in 

which there can be any number of other directories, in which 

there can be any number of other directories, and so on. With 

limited numbers of fi les, this model of organization is easy 

to use and simple to navigate. The drawback of this is that 

with larger numbers of fi les (and directories), it can become 

diffi cult to locate a single fi le.

The URL (Uniform Resource Locator) for the above images:

C://HD/Users/User _ Name/Documents/Work/Kindle/01 _ Font _ Research/ _ Images/How _ Are _ Books _ Managed/File _ Folders/



Dubberly Design Office / Understanding Digital Typography 112

In contrast to the location-based organizational method of direc-
tories, tags allow users to organize fi les into virtual collections. 
A single fi le can be have many tags, thus allowing it to be part of 
many virtual collections. In addition, tags can be nested and have 
a hierarchy. Tags enable users to fi lter search results through in-
clusion and exclusion of tags. 

The primary diffi culty of tagging is that it is mostly manual – 
someone has to add the tags, a far more time consuming process 
than putting a fi le in a directory. It is possible to imagine a system 
that simplifi ed this process through the use of inherited tags, but as 
of today such systems have not seen widespread use. Social tag-
ging systems such as Seadragon, MusicBrainz, and LibraryThing 
offer promise.

Tagging

How Are Digital Books Managed?

The advantages of tagging over directories become apparent when 

attempting to classify something as part of more than one collection. 

Tag-based categorization can be more specifi c and detailed.

Nested sets are very useful when trying to fi ne tune a search. Using 

directories alone could not achieve the same level of detail and specifi city 

as tagging in this case – for instance, in the following directory structure, 

there is no way to effi ciently categorize Tim or have people who are 

Adults and not part of the Household:

– Household

 – Child

 – Parent

 – Married

 – Dad

Directories do not allow cross-listing or exclusions.

Sally is 

a Child, 

and part of the Household

but not an Adult.

John is 

a Dad,

Married,

a Parent,

but not a Grandparent,

an Adult,

a part of the Household,

but not a Child

Tim is 

a Dad,

but not Married

a Parent,

but not a Grandparent

an Adult,

but not part of the Household,

or a Child.

Family Structure Resulting Tags

Sally TimJohn

Household

Adult

Child

Parent

Sally

Grandparent

Grandma Grandpa

Jane Jack

Bob

Lisa

Married

Mom

Dad

John Tim

Sue

Directory Structure Nested Tags

Like directories, tags allow for nested 

hierarchy. Unlike directories, tags also 

allow for items to be grouped outside of 

a linear tree structure – items can be in 

a hierarchical branch of a tree and in a 

group that crosses tree branches.



Dubberly Design Office / Understanding Digital Typography 113

A user of a search service enters terms in a form. Clicking 
on an action button in the search form sends the request to 
the search engine. The search engine compares the request 
with entries in an index. In the index, each entry is associated 
with one or more pointers (usually URLs). If a requested term 
matches an entry, the search engine returns the associated 
pointers in the form of search results.

If the search engine fi nds multiple pointers associated 
with a requested term, it ranks them according to various 
algorithms. It may also consult a lexicon fi le which forces some 
pointers to the top of the list. The rules by which a service 
ranks results are often unavailable to users.

Depending on the search service, users may constrain 
their searches in several ways including: 

– by using Boolean operators to add or exclude terms
– by limiting the range: collection, domain, or language
– by specifying date, author, region of origin, or other metadata
– by specifying media type

Search

What Is a Digital Book?

Collection of 

Objects

Index of

Collection

User

Selection

Results

Search Go
Search

Engine

Results

Page 

Generator

Lexicon

Log

visits

selects result 
from

viewed by

send request for selected object

return and display

viewed by

send terms

if a term matches more than one 
object, the results must be ranked

Indices can be built manually or 
automatically. There are many strategies for 
creating indices automatically (e.g. “spiders”, 
etc.); however there must always be a way to 
override the automated results.

ranked results 
sent to

results formatted

record terms in

attempt to fi nd terms in

Object
Object

Object
Object

ObjectObject

Metadata



Dubberly Design Office / Understanding Digital Typography 114

There are many kinds of applications that can be used to organize 
and manage a digital library. Some simply provide a method for 
adding tags to fi les on a hard drive (e.g. Leap) while others tag 
and store data inside a proprietary database (e.g. Yojimbo). File 
management applications tend to fall into two categories: generalist 
managers (“anything buckets”) for almost any fi le type and specialist 
applications designed to handle one specifi c fi le type. Generalist 
managers offer extended functionality for sorting fi les beyond the 
OS, while specialist managers also usually provide tailored viewing 
options and more detailed metadata entry. Most library management 
tools support both folders and tagging; however both types typically 
prevent users from accessing data managed by the application 
outside the application.

Some popular library management tools are:

– Books
– Daneismos
– Delicious Library
– Endnote
– Evernote
– Leap
– Papers
– Together
– Yojimbo

Library Management Tools

How Are Digital Books Managed?

Papers is an application for 

managing PDFs. Beyond sorting 

and tagging, the application 

provides users with a way to 

enter full bibliographic data 

to each fi le and a multitude of 

viewing options. 

Together is a generalist 

application for cataloging your 

digital libraries. The application 

allows users to sort and 

categorize the material in their 

library, but the viewing options 

are not as powerful as specialist 

applications made for PDFs and 

e-books (see below).



Dubberly Design Office / Understanding Digital Typography 115

In recent years, fi le management tools have begun migrating online. 
Most online tools for fi le management do not hold the actual fi les, 
but rather simply provide users with a tool for cataloging their 
offl ine libraries. 

Online Library Management Tools

How Are Digital Books Managed?

Shelfari is a social media site and “community-powered 

encyclopedia” for books. 

Good Reads lets user catalog their libraries and share their 

impressions with others.

Library Thing is a website for cataloging an offl ine library – the 

contents of the library are analyzed by the site to provide users 

with statistics about their material and recommendations for 

further reading.



Dubberly Design Office / Understanding Digital Typography 116

Social services for sharing the reading experience are emerging 
online – digital book groups that allow users to discuss texts.

Online Social Book Services

How Are Digital Books Managed?

Sites such as Book Glutton allow users to share their reading list 

and discuss books with other members of their reading group. 
Designers and Books is a site where invited designers can 

review books and share their recommended book lists.



Dubberly Design Office / Understanding Digital Typography 117

E-books are delivered, consumed, and managed in a number of ways
ranging from in-browser online reading with content hosted in the cloud
to self-contained apps that are both reader application and content.

Types of E-book Readers

How Are Digital Books Managed?

Device

Device Device

Device

Web

Browser

Proprietary 

Reader

App

Self-contained 
book

App

Reader and 
Database

Files downloaded 
to device

Files accessed 
by reader

Files accessed 
by browser

Browser based reader 

accesses content hosted 

in the cloud.

Examples:

– Google eBookstore

– Bookworm

– Ibis Reader

Browser

A proprietary reader accesses 

e-book fi les from a library of

content. Relies on standards.

Examples:

– Kindle

– iBooks

– Stanza

Reader

Content fi les can only be 

accessed via the user interface 

of the app itself.

Examples:

– Inkling

– The Daily

App

No distinction between app and 

content – app is both the content 

and the reader.

Examples:

– Martha Stewart Makes Cookies

– Phaidon Design Classics

– Push Pop Press

Self-contained



118Dubberly Design Office / Understanding Digital Typography

The Web requires a special class of font usage and display 

technologies and techniques.

118

How Do Fonts 

Work on the Web?

Appendix:

1995 <font> tag introduced by Netscape

–face attribute of <font> introduced by Microsoft

(with Internet Explorer 1.0)

1996 CSS1 introduced

allows for selection of typeface through style sheet

Embedded Open Type (.eot) introduced by Microsoft

(with Internet Explorer 3.1)

1998 <font> deprecated, HTML 4.01

@font-face proposed, CSS2

@font-face removed, CSS2.1

2005 @font-face fully implemented, CSS3

Year Event



Dubberly Design Office / Understanding Digital Typography 119

A Web browser layout engine (sometimes confusingly referred 
to as a rendering engine), is a software component that takes 
marked up content such as HTML, XML, image fi les, etc. and style 
information such as CSS, XSL, etc. and displays formatted content 
on screen. A Web browser layout engine can also be embedded in 
e-mail clients, on-line help systems, or other applications that need
to display and allow editing of Web content.

Browser Layout Engines 

How Do Fonts Work on the Web?

Internet Explorer

Microsoft

Embedded OpenType

TrueType

OpenType

SVG

Web Open Font Format

@font-face

src

font-stretch

unicode-range

font-variant

font-feature-settings

<3.1 [IE 4.0]

<3.1 [IE 4.0]

5.0

5.0

-

5.0

Partial

5.0

5.0

-

-

Mozilla Foundation

Firefox, Camino, 

SeaMonkey, Galeon, 

K-Meleon, Flock, GNU

IceCat, Icedove etc.

1.9.1

-

1.9.1

1.9.1

-

1.9.2

1.9.1

-

-

-

-

Gecko*

* Both Gecko and Webkit are open source

Developer

Used in

Version support for 

CSS3 font resources

Version support 

in HTML & XML 

documents 

(for fonts applied in 

@font-face rule)

Opera, Opera Mobile, 

Nintendo DS browser, 

Internet Channel

Opera

2.2

-

2.2

2.2

2.2

-

2.2

-

-

-

-

Presto Trident

Chrome, Safari, AIR, 

Android, Symbian 

S60, OmniWeb, 

Palm webOS, Adobe 

Dreamweaver CS4

Apple, KDE, Nokia, 

Google, RIM, Palm, 

& others

525

-

525

525

525

533

525

-

Partial

-

-

WebKit*



Dubberly Design Office / Understanding Digital Typography 120

When a browser receives a document to be displayed, there are a 
number of steps it must go through to take the received content and 
turn it into what you see on screen. Most major browsers render a 
page by fi rst parsing HTML into a DOM tree (see page 88) and then 
using that as the basis for a render tree (see page 89). The example 
shown to the right is based on WebKit and shows the two possible 
paths: one for simple text and the other for complex text. 

Webpage Rendering

How Do Fonts Work on the Web?

OS

OS

Browser

Rendering Engine

WebKit

attach style data 
to render objects

DOM Tree

The layout engine takes the DOM tree and attaches 
style data to it to create the render tree, which 
instructs the rendering engine on how to layout the 
content in the DOM tree.

Render Tree

buildparse

deliver 
bitmapspaint

DOM 

Tree

Render 

Tree

Painted

Canvas

Bitmap

Generator

HTML

CSS

Browser

Layout Engine

Rendering Engine

WebKit

attach style data 
to render objects

build

deliver
layout metrics 

& request 
line layout

request
bitmaps

deliver 
implemented 
layout
& request 
bitmaps

parse

deliver 
bitmapspaint

DOM 

Tree

Render 

Tree

Painted 

Canvas

Bitmap

Generator

Layout 

Manager
HTML

CSS

Path 1: Simple Text & 

Graphic Elements

Page rendering takes this path 

when dealing with non-text 

graphic elements and when the 

text to be laid out is “simple”, 

meaning it has no contextual 

shaping. Languages that have 

no contextual shaping in WebKit 

include English, Spanish, and 

Chinese. This means English text 

in WebKit never has ligatures.

Path 2: Complex Text

Page rendering takes this path 

when the text to be laid out 

is “complex”, meaning it has 

contextual shaping. Languages 

that have contextual shaping in 

WebKit include Arabic and all the 

Indic scripts. In this path, text line 

layout is handled by the operating 

system, not WebKit.

Style

StyleStyle Style

Element

ElementElement Element



Dubberly Design Office / Understanding Digital Typography 121

Font rendering in Web browsers is similar to font 
rendering in a text editor. (See page 96.) Both processes 
rely heavily on core OS APIs and resources to handle 
glyph rendering and, sometimes, text line assembling. 
The primary difference is that instead of the OS layout 
engine receiving text being input from the keyboard, it is 
receiving character strings pulled out of the markup that 
the server delivers to the Web browser. In addition, the 
browser engine also delivers style data to the rendering 
engine that the server provides in the form of both HTML 
markup tags and CSS attributes. This data is laid out by 
either the browser’s internal layout engine or by the OS’s 
layout engine depending on whether the text is simple or 
complex (see previous page). The OS rendering engine is 
always used to generate bitmaps.*

The example to the right, which is based on WebKit, follows path 

#2 from the previous page. If it was to follow path #1, all of the 

steps taken in the Layout Engine would be handled inside WebKit.

* It appears that Safari for Windows has its own
rendering engine.

Webpage Rendering: 

Fonts 

How Do Fonts Work on the Web?

Browser

Font File Library

Glyph

Cache

Font Cache

Font File

WebKit

Rendering 

Engine

Server

Input

Device

TextViewWebCore
Layout

Manager

Glyph

Generator

server

Typesetter

Text

Storage

Font

ID

HTML

CSS

Lang.

Data

Char.

String

Display 

Device

send 
key 

strokes

send load request

deliver markup, etc.

g
en

er
at

e

print
view

fi nd

d
el

iv
erdeliver

ref.

deliver
view

send char. 
string & 

CSS data

cache bitmaps

sen
d

sen
d

Layout Engine

Font 

outline

Char.

Map

send new 
char. string

assemble glyphs 
into lines

model text area,
build display

send new data,
specify what kind 
of change:
– characters
– attributes

if data already 
exists: A

if not: B

Code

Pages

*

validate1

2

4

3

deliver

deliver 
glyph #s

call

send 
correct 
code

If the local font fi le 
library does not contain 
the font designated (in 
the CSS), it will move 
down the list until a 
matching font is found.

Font 

Library

Index

*  Unicode fonts do not
have codepages, they
bypass this step

A

B

deliver aliased or anti-aliased or subpixel 
rendered glyph bitmaps

User



Dubberly Design Office / Understanding Digital Typography 122

A number of techniques have been developed to get around the 
limited number of fonts available for the Web.

CSS image replacement (Pharck method)

This practice involves overlaying text with an image containing the 
same text written in the desired font. This is good for search engine 
optimization and aesthetic purposes but prevents text selection and 
increases bandwidth use.

Scalable Inman Flash Replacement (sIFR)

This is similar to image replacement techniques, though the text is 
selectable and rendered from vectors in Flash. However, this method 
requires the presence of a proprietary plugin on a client system. 
This method is an open source JavaScript and Adobe Flash dynamic 
webfonts implementation, enabling the replacement of text elements 
on HTML webpages with Flash equivalents. It was initially developed 
by Mike Davidson and improved by Mark Wubben. It is a scalable 
variety of HTML text-to-fl ash replacement pioneered by Shaun Inman.

Facelift Image Replacement (FLIR) 

Similar to sIFR. But instead of using Flash, it embeds plain images 
that are generated automatically from the text on the webpage. 
Even if user does not have a Flash plugin installed, he will see the 
text replaced by FLIR. However, FLIR requires that the website host 
is capable of running PHP, and it is even less accessible than sIFR 
because the text is not selectable.

Cufón / Typeface.js

These are two similar but independent technologies using only 
JavaScript to draw the typeface onto the page using either the 
HTML5 <canvas> element for WebKit and Gecko browsers or VML 
for Internet Explorer 

Font Replacement 

How Do Fonts Work on the Web?

Source:

www.mightymeta.co.uk/introducing-the-web-safe-font-cheat-sheet/

www.mikeindustries.com/blog/sifr

The sIFR Process

– A normal HTML page is loaded into the browser.

– A JavaScript function is run which fi rst checks that Flash is installed and

then looks for designated tags, IDs, or classes.

– If Flash isn’t installed (or if JavaScriptis turned off), the HTML page

displays as normal and nothing further occurs. If Flash is installed,

JavaScript traverses through the page source measuring each element

designated as something that can be “sIFRed”.

– Once measured, the script creates Flash movies of the same dimensions

and overlays them on top of the original elements, pumping the original

browser text in as a Flash variable.

– ActionScript inside of each Flash fi le then draws that text in your chosen

typeface at a 6 point size and scales it up until it fi ts snugly inside the

Flash movie.

The Cufón Generator Process

FontForge

Font 

File

SVG 

Font

VML 

Paths

Javascript



Dubberly Design Office / Understanding Digital Typography 123

Font Hosting

A technique to download remote fonts was fi rst specifi ed 
in CSS2 through the use of the @font-face tag. It was 
quickly removed in CSS2.1 and not reintroduced until 
CSS3. It was (and remains) controversial because using 
a remote font as part of a webpage allows the font to 
be freely downloaded. This could result in fonts being 
used outside the terms of their license or illegally spread 
through the Web. TrueDoc (PFR), Embedded OpenType 
(EOT), and Web Open Font Format (WOFF) are formats 
designed to address these issues by creating fonts that do 
not work in any applications other than a Web browser.

In response to issues with @font-face, in the last 
two years a number of type foundries and independent 
companies have created online services for remote 
hosting and delivery of font fi les. Font hosting services 
allow users to pay either a subscription or a one-time 
purchase fee to host fonts online. This prevents unknown 
users from illegally downloading the source fi les. Most 
services host the font for the user and provide the 
necessary @font-face CSS declaration, although some 
use JavaScript instead.

@font-face code structure:

@font-face {

 font-family: Gentium;

 src: url(http://site/fonts/Gentium.ttf);

 }

p { 

font-family: Gentium, serif; 

 }

How Do Fonts Work on the Web?

Browser

Glyph

Cache

Font Cache

WebKit

Rendering 

Engine

Server

Input

Device

TextViewWebCore
Layout

Manager

Glyph

Generator

server

Typesetter

Text

Storage

Font

ID

HTML

CSS

Lang.

Data

Char.

String

Display 

Device

send 
key 

strokes

send load request

deliver fonts, markup, etc.

deliver font fi le from online font service

g
en

er
at

e

print
view

fi nd

d
el

iv
er

deliver

ref.

deliver
view

send char. 
string & 

CSS data

cache bitmaps

sen
d

sen
d

Layout Engine

send new 
char. string

assemble glyphs 
into lines

model text area,
build display

send new data,
specify what kind 
of change:
– characters
– attributes

if data already 
exists: A

if not: B

Code

Pages

*

validate1

4

3

deliver 
glyph #s

*  Unicode fonts do not
have codepages, they
bypass this step

Font File

Font 

outline

Char.

Map

deliver

send 
correct 
code

3

deliver aliased or anti-aliased or subpixel 
rendered glyph bitmaps

A

B

2

Font

File

User



Dubberly Design Office / Understanding Digital Typography 124

Embedded OpenType (EOT) is a font fi le format developed by Microsoft 
to provide font embedding on the Web with font license protection. 
Font embedding on the Web is a term used only in conjunction with 
the EOT format; when any other font fi le format is used the process is 
called font hosting (see previous page).

There are two differences between standard OpenType (see 
pages 56 and 60) and Embedded OpenType. The fi rst is that EOT 
encodes data into the font fi le that declares what website, Web 
directory, or webpage are allowed to access it. The second is that 
EOT uses compression and subsetting to decrease the font fi le size. 

In 2008 Microsoft submitted EOT to the W3C in the hope of 
having it approved as a Web standard. In doing so they made the 
specifi cation public and thus many critics argue that the encryption 
method used in EOT is now useless. 

EOT

How Do Fonts Work on the Web?

Embedded OpenType fi les are 

encoded with metadata that 

prevents them from working in 

any webpage except those that are 

specifi ed in the fi le.

Browser

Browser

Server

Authorized

HTML

Unauthorized

HTML

Embedded 

OpenType

Font File

request

re
q

u
es

t d
en

ie
d

deliver



Dubberly Design Office / Understanding Digital Typography 125

Web Open Font Format (WOFF), developed in 2009, is a wrapper 
for TrueType and OpenType fonts that allows them to be embedded 
in webpages. Unlike TrueType and OpenType fonts, which can be 
read by Web browsers and desktop applications, fonts using WOFF 
can only be read by Web browsers, thus providing a strong level of 
protection against piracy. In addition to the wrapper, the format is 
also compressed and can result in fonts that are up to 40% smaller 
than standard TrueType. The World Wide Web Consortium (W3C) has 
recommended that it become the de facto font format for use online. 

WOFF

How Do Fonts Work on the Web?

Browser

Web Open Font Format are fonts 

encoded so that they will only work 

in a Web browser. If the font is 

installed on a local computer, it will 

not work in any desktop application.

Photoshop, Illustrator, InDesign, 

Acrobat, Word, Excel, Powerpoint, 

iCal, NewsFire, iChat,  Entourage, 

Thunderbird, TextMate, Coda, 

BBEdit, etc.

HTML

Web Open 

Font Format 

Font File

request

re
q

u
es

t d
en

ie
d

deliver



Dubberly Design Office / Understanding Digital Typography 126

There are almost no technical barriers to hosting a font fi le and using 
it through @font-face. Since it would be easy for anyone with minor 
technical knowledge to download (i.e. steal the font fi le), most type 
foundry licenses don’t allow use with @font-face. Seen in this light, font 
hosting services are essentially DRM services. There are many strategies 
to do this; however as of yet none of them are perfect. A determined, 
and technically savvy, user attempting to steal a font would eventually 
be able to do so. Current strategies used to protect fonts include:

– Webfont formats: Most of the services listed make use of Web formats
for the typefaces they distribute (EOF, WOFF). This prevents the font
from being used in desktop applications (Photoshop, InDesign, etc.).
There are now several type foundries that sell their fonts in Web formats
directly to users, allowing them to host these fi les as they see fi t.

– HTTP referrer checking: Only authorized domains are allowed to link to
fonts. Foundries which sell webfonts directly to users often require this
measure be taken in the End User License Agreement (EULA) of the font.

– Obfuscation: Hard-to-guess fi le names listed as strings of seemingly
random characters.

– Data URIs: Fonts are represented as Base64 encoded strings. Encoded
fonts can be injected in-line with generated CSS. This makes font pirating
diffi cult because the there is no font fi le to steal; there is only raw data
that would have to be re-compiled.

– Visible license data: Display of license, copyright, and “allowed” domains
in the CSS. This serves as a reminder that repurposing font fi les is illegal.

– Segmenting and subsetting: Font fi les are split into multiple fi les and
recombined using the CSS font stack. Additionally, only the characters
needed for use on the page are delivered (preventing an unauthorized
user from recombining segments into a complete font).

Digital Rights Management (DRM) For Fonts 

How Do Fonts Work on the Web?



Dubberly Design Office / Understanding Digital Typography 127

Scalable vector graphics (SVG) is a graphics language based on XML 
(extensible markup language). Compared to the fi le size of bitmap 
image formats (.jpeg, .gif, etc.), SVG is incredibly small. Instead of 
storing color data for every pixel in the image fi le, vector graphics are 
defi ned in terms of points, the lines/curves between them, and fi lls 
(much like font fi le outline formats). This results in much less data 
needing to be stored in the fi le. 

The SVG format online has many potential benefi ts, especially in 
the area of dynamic graphics and fonts because unlike pixel-based data 
it can be scaled, rotated, or stretched without quality loss. Since the 
image data is stored as vectors, scripting languages such as JavaScript 
can be used to manipulate the image data (e.g. page location data can 
be treated as a variable instead of a fi xed value) in real-time.

SVG

How Do Fonts Work on the Web?

vs

50% Black

50% Magenta

0,0

0,8

Bitmap image formats contain data specifying 
color for every pixel location – with a large 
block of the same color, there is a large 
amount of redundant data because there are 
two pieces of data for every pixel.

Bitmap

25 pixels × (location + color) = 50 datapoints

SVG

(origin) + (x width) + (y height) + (color) = 4 datapoints

SVG format allows for the same shape to be 
defi ned using only four datapoints! 

Scripting languages such as JavaScript can 
be used to dynamically manipulate the image 
data of an SVG fi le. Location, size, or color 
data can be treated as variables rather than 
fi xed entities.

0,0
50% 
Black

0,1
50% 
Black

0,2
50% 
Black

0,3
50% 
Black

0,4
50% 
Black

1,0
50% 
Black

1,1
50% 
Black

1,2
50% 
Black

1,3
50% 
Black

1,4
50% 
Black

2,0
50% 
Black

2,1
50% 
Black

2,2
50% 
Black

2,3
50% 
Black

2,4
50% 
Black

3,0
50% 
Black

3,1
50% 
Black

3,2
50% 
Black

3,3
50% 
Black

3,4
50% 
Black

4,0
50% 
Black

4,1
50% 
Black

4,2
50% 
Black

4,3
50% 
Black

4,4
50% 
Black

5

5

8

3



Dubberly Design Office / Understanding Digital Typography 128

Font Hosting: 

Google 

The Google Font Directory is a pool of free webfonts 
available under the OFL or Apache License. The fonts are 
hosted by Google and can be linked within a webpage 
using a simple CSS call like:

<html>

<head>

  <link rel=”stylesheet” type=”text/css” 

href=”http://fonts.googleapis.com/

css?family=Tangerine”>

 <style>

body {

 font-family: ‘Tangerine’, serif;

 font-size: 48px;

 }

 </style>

</head>

<body>

<h1>Making the Web Beautiful!</h1>

</body>

</html>

How Do Fonts Work on the Web?

Input

Device

Display 

Device

Browser

Glyph

Cache

Font Cache

WebKit

Rendering 

Engine

Server Google 

Server

TextViewWebCore
Layout

Manager

Glyph

Generator

server server

Typesetter

Text

Storage

Font

ID

HTML

CSS

Lang.

Data

Char.

Stringsend 
key 

strokes

send load request

deliver fonts, markup, etc.

send 
request for 

font fi le

deliver font fi le from online font service

g
en

er
at

e

print
view

fi nd

req
u

est

d
el

iv
er

ref.

deliver
view

send char. 
string & 

CSS data

cache bitmaps

sen
d

sen
d

Layout Engine

send new 
char. string

assemble glyphs 
into lines

model text area,
build display

send new data,
specify what kind 
of change:
– characters
– attributes

if data already 
exists: A

if not: B

Code

Pages

*

validate1

deliver 
glyph #s

*  Unicode fonts do not
have codepages, they
bypass this step

Font File

Font 

outline

Char.

Map

deliver

send 
correct 
code

deliver aliased or anti-aliased or subpixel 
rendered glyph bitmaps

d
el

iv
erdeliver

2

A

B

4

3

6

5

5

Font

File

User



Dubberly Design Office / Understanding Digital Typography 129

Font Hosting: 

Typekit 

Typekit appears to be the most popular font hosting 
service at the moment. They charge a yearly subscription 
fee that opens the entire library to publishers, who are 
then able to select what typefaces they want to use 
on what sites (both must be specifi ed). Typekit does 
more than host fi les for @font-face use, the service 
also implements a number of strategies for making font 
hosting safer such as subsetting and fragmenting font 
fi les, validating that a given site is permitted to use a font, 
and using webfont formats. Additionally, they link to the 
font fi le through JavaScript instead of plain @font-face. 

www.typekit.com/

How Do Fonts Work on the Web?

Input

Device

Display 

Device

Browser

Glyph

Cache

Font Cache

WebKit

Rendering 

Engine

Server Typekit

Server

TextViewWebCore
Layout

Manager

Glyph

Generator

server server

Typesetter

Text

Storage

Font

ID

HTML

CSS

Lang.

Data

Char.

Stringsend 
key 

strokes

send load request

send 
request for 

font fi le

req. token

send token

deliver font fi le from online font service

g
en

er
at

e

print
view

fi nd

deliver
view

send char. 
string & 

CSS data

cache bitmaps

sen
d

sen
d

Layout Engine

send new 
char. string

assemble glyphs 
into lines

model text area,
build display

send new data,
specify what kind 
of change:
– characters
– attributes

if data already 
exists: A

if not: B

Code

Pages

*

validate

deliver 
glyph #s

*  Unicode fonts do not
have codepages, they
bypass this step

Font File

Font 

outline

Char.

Map

deliver

send 
correct 
code

deliver fonts, markup, etc.
deliver aliased or anti-aliased or subpixel 
rendered glyph bitmaps

d
el

iv
erdeliver

1

2

8

7

A

B

7

3

4

5

req
u

est

d
el

iv
er

6

Font

File

User




